Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
"Modeling, Simulation, Design and Engineering of WDM Systems and Networks "provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building systems. The third part of the book covers networking issues related to the design of provisioning and survivability algorithms for impairment-aware and multi-domain networks. Intended for professional scientists, company engineers, and university researchers, the text demonstrates the effectiveness of computer-aided design when it comes to network engineering and prototyping.
High-Frequency Characterization of Electronic Packaging will be of interest to researchers and designers of high-frequency electronic packaging. Understanding high-frequency behavior of packaging is of growing importance due to higher clock-speeds in computers and higher data transmission rates in broadband telecommunication systems. Basic knowledge of the high-frequency behavior of packaging and interconnects is, therefore, indispensable for the design of future telecommunication and computer systems. High-Frequency Characterization of Electronic Packaging gives the reader an insight into how high-frequency characterization of electronic packaging should be done and describes the problems that have to be tackled, especially in performing accurate measurements on modern IC-packages and in determination of circuit models. High-Frequency Characterization of Electronic Packaging is conceived as a comprehensive guide for the start of research and to help in performing high-frequency measurements. Important notions in high- frequency characterization such as S-parameters, calibration, probing, de-embedding and measurement-based modeling are explained. The described techniques are illustrated with several up-to-date examples.
This brief examines issues of spectrum allocation for the limited resources of radio spectrum. It uses a game-theoretic perspective, in which the nodes in the wireless network are rational and always pursue their own objectives. It provides a systematic study of the approaches that can guarantee the system's convergence at an equilibrium state, in which the system performance is optimal or sub-optimal. The author provides a short tutorial on game theory, explains game-theoretic channel allocation in clique and in multi-hop wireless networks and explores challenges in designing game-theoretic mechanisms for dynamic channel redistribution. Since designing a completely secure mechanism is extremely expensive or impossible in most of distributed autonomous systems, it is more beneficial to study misbehavior of the nodes and develop light-weighted game-theoretic channel allocation mechanisms. With a mix of theoretical and hands-on information, the brief traces the concepts of game theory, the current state of spectrum allocation in wireless networks and future competition for resources. Thorough yet accessible, the content is ideal for researchers and practitioners working on spectrum redistribution. It is also a helpful resource for researchers and advanced-level students interested in game theory and wireless communications.
Next generation optical communication systems will have to transport a significantly increased data volume at a reduced cost per transmitted bit. To achieve these ambitious goals optimum design is crucial in combination with dynamic adaptation to actual traffic demands and improved energy efficiency. In the first part of the book the author elaborates on the design of optical transmission systems. Several methods for efficient numerical simulation are presented ranging from meta-model based optimization to parallelization techniques for solving the nonlinear Schroedinger equation. Furthermore, fast analytical and semi-analytical models are described to estimate the various degradation effects occurring on the transmission line. In the second part of the book operational aspects of optical networks are investigated. Physical layer impairment-aware routing and regenerator placement are studied. Finally, it is analyzed how the energy efficiency of a multi-layer optical core network can be increased by dynamic adaptation to traffic patterns changing in the course of the day.
1.1 COMMUNICATION WHILE TRAVELLING The pace of our daily life has been increasing for several decades. Our needs have multiplied as new products have appeared and then been replaced after a few years, or even months, of existence by a more fashionable product or one of higher performance. The life cycles of the technologies used in consumer and professional electronic products are also becoming shorter. This acceleration is an inherent fact of our consumer society. and the relationship between people and machines are Lifestyles due to the multiplicity of ephemeral consumer products. Objects changing no longer have a history; they are merely tools which fulfil a predetermined function. Personal portable products are of a new type which has appeared among pens, wallets, these impersonal objects. This category includes watches, handbags, calculators, portable radios and pocket telephones. As these products for the pocket are carried on one's person, they belong in a very personal way and have, therefore, a speciftc identity corresponding to the image which they are given. In the evolution of lifestyles, the explosive increase of travel and time management are major factors. The pocket telephone is, therefore, remark able for two reasons. It is not only an impersonal tool or product but is also very much a personal portable product. The possibility of distant com munication while travelling, being able to call or be called at will anywhere at any time permits the pocket telephone to be often considered as a desirable, almost magic, personal item."
Recently, there has been interest by regulators, the public and the manufacturers of wireless devices in the issues relating to the safety of radio frequency (RF) energy. These issues require an understanding of the scientific underpinnings of both physics of RF energy and cellular biology. This book is designed to provide precisely such cross-functional expertise. The editors of this book intend to provide a reliable source for a sound scientific understanding of the issues and to stimulate future scientific advances in this area. Therefore, the audience for this book includes such diverse groups as scientists, governmental policy-makers and regulatory bodies, representatives of industry and the public at large.
A detailed study of the science, engineering and applications of terahertz technology, based on room-temperature solid-state devices, which are seen as the key technology for wider applications in this frequency range. The relative merits of electronic and optical devices are discussed and new device principles identified. Issues of terahertz circuit design, implementation and measurement are complemented by chapters on current and future applications in communications, sensing and remote surveillance. Audience: The unique coverage of all aspects of terahertz technology will appeal to both new and established workers in the field, as well as providing a survey for the interested reader.
Everybody is current in a world surrounded by computer. Computers determine our professional activity and penetrate increasingly deeper into our everyday life. Therein we also need increasingly refined c- puter technology. Sometimes we think that the next generation of c- puter will satisfy all our dreams, giving us hope that most of our urgent problems will be solved very soon. However, the future comes and il- sions dissipate. This phenomenon occurs and vanishes sporadically, and, possibly, is a fundamental law of our life. Experience shows that indeed 'systematically remaining' problems are mainly of a complex tech- logical nature (the creation of new generation of especially perfect - croschemes, elements of memory, etc. ). But let us note that amongst these problems there are always ones solved by our purely intellectual efforts alone. Progress in this direction does not require the invention of any 'superchip' or other similar elements. It is important to note that the results obtained in this way very often turn out to be more significant than the 'fruits' of relevant technological progress. The hierarchical asymptotic analytical-numerical methods can be - garded as results of such 'purely intellectual efforts'. Their application allows us to simplify essentially computer calculational procedures and, consequently, to reduce the calculational time required. It is obvious that this circumstance is very attractive to any computer user.
Microwave Integrated Circuits provides a comprehensive overview of analysis and design methods for integrated circuits and devices in microwave systems. Passive and active devices, and linear and non-linear circuits are covered with a final chapter detailing measurement and test techniques.
The book consists of two Volumes. The first (the preceding volume) is devoted to the general nonlinear theory of the hierarchical dynamic oscillative-wave systems. This theory has been called the theory of hi- archical oscillations and waves. Here two aspects of the proposed theory are discussed. The first aspects concern the fundamental nature and the basic c- cepts and ideas of a new hierarchical approach to studying hierarchical dynamic systems. A new hierarchical paradigm is proposed as a - sis of a new point of view of such types of systems. In turn, a set of hierarchical principles is formulated as the fundamental basis of this paradigm. Therein the self-resemblance (holographic) principle plays a key role here. An adequate mathematic description (factorization) of the proposed paradigm is carried out. The concepts of structural and dynamic (functional) operators are put into the basis of this descr- tion. Electrodynamics is chosen as a convenient basis for an obvious demonstration of some key points of the proposed new theory. The second aspect has a purely mathematical nature. It is related to the form of factorization (i.e., mathematical description) of hier- chical types of dynamic models, and discussion of the methods of their mathematical analysis. A set of the hierarchical asymptotic analytical- numerical methods is given as an evidence of the practical effectiveness of the proposed version of hierarchical theory.
Low Power Consumption is one of the critical issues in the performance of small battery-powered handheld devices. Mobile terminals feature an ever increasing number of wireless communication alternatives including GPS, Bluetooth, GSM, 3G, WiFi or DVB-H. Considering that the total power available for each terminal is limited by the relatively slow increase in battery performance expected in the near future, the need for efficient circuits is now critical. This book presents the basic techniques available to design low power RF CMOS analogue circuits. It gives circuit designers a complete guide of alternatives to optimize power consumption and explains the application of these rules in the most common RF building blocks: LNA, mixers and PLLs. It is set out using practical examples and offers a unique perspective as it targets designers working within the standard CMOS process and all the limitations inherent in these technologies.
This volume contains the proceedings of the first ICASE/LaRC Work shop on Computational Electromagnetics and Its Applications conducted by the Institute for Computer Applications in Science and Engineering and NASA Langley Research Center. We had several goals in mind when we decided, jointly with the Elec tromagnetics Research Branch, to organize this workshop on Computa tional Electromagnetics ( CEM). Among our goals were a desire to obtain an overview of the current state of CEM, covering both algorithms and ap plications and their effect on NASA's activities in this area. In addition, we wanted to provide an attractive setting for computational scientists with expertise in other fields, especially computational fluid dynamics (CFD), to observe the algorithms and tools of CEM at work. Our expectation was that scientists from both fields would discover mutually beneficial inter connections and relationships. Another goal was to learn of progress in solution algorithms for electromagnetic optimization and design problems; such problems make extensive use of field solvers and computational effi ciency is at a premium. To achieve these goals we assembled the renowned group of speakers from academia and industry whose talks are contained in this volume. The papers are printed in the same order in which the talks were pre sented at the meeting. The first paper is an overview of work currently being performed in the Electromagnetic Research Branch at the Langley Research Center."
This lecture presents a modern approach for the computation of Mathieu functions. These functions find application in boundary value analysis such as electromagnetic scattering from elliptic cylinders and flat strips, as well as the analogous acoustic and optical problems, and many other applications in science and engineering. The authors review the traditional approach used for these functions, show its limitations, and provide an alternative "tuned" approach enabling improved accuracy and convergence. The performance of this approach is investigated for a wide range of parameters and machine precision. Examples from electromagnetic scattering are provided for illustration and to show the convergence of the typical series that employ Mathieu functions for boundary value analysis.
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.
Machine vision technology has revolutionised the process of automated inspection in manufacturing. The specialist techniques required for inspection of natural products, such as food, leather, textiles and stone is still a challenging area of research. Topological variations make image processing algorithm development, system integration and mechanical handling issues much more complex. The practical issues of making machine vision systems operate robustly in often hostile environments together with the latest technological advancements are reviewed in this volume. Features: - Case studies based on real-world problems to demonstrate the practical application of machine vision systems. - In-depth description of system components including image processing, illumination, real-time hardware, mechanical handling, sensing and on-line testing. - Systems-level integration of constituent technologies for bespoke applications across a variety of industries. - A diverse range of example applications that a system may be required to handle from live fish to ceramic tiles. Machine Vision for the Inspection of Natural Products will be a valuable resource for researchers developing innovative machine vision systems in collaboration with food technology, textile and agriculture sectors. It will also appeal to practising engineers and managers in industries where the application of machine vision can enhance product safety and process efficiency.
This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of operation, impedance, and polarization. These models help designers understand reconfigurable antenna structures and enhance their functionality since they transform antennas from bulky devices into mathematical and software accessible models. The use of graphs facilitates the software control and cognition ability of reconfigurable antennas while optimizing their performance. This lecture also discusses the reduction of redundancy, complexity and reliability of reconfigurable antennas and reconfigurable antenna arrays. The full analysis of these parameters allows a better reconfigurable antenna implementation in wireless and space communications platforms. The use of graph models to reduce the complexity while preserving the reliability of reconfigurable antennas allow a better incorporation in applications such as cognitive radio, MIMO, satellite communications, and personal communication systems. A swifter response time is achieved with less cost and losses. This lecture is written for individuals who wish to venture into the field of reconfigurable antennas, with a little prior experience in this area, and learn how graph rules and theory, mainly used in the field of computer science, networking, and control systems can be applied to electromagnetic structures. This lecture will walk the reader through a design and analysis process of reconfigurable antennas using graph models with a practical and theoretical outlook.
Finite element methods have become essential design tools for managing the complex structures and devices needed in modern microwave technology. Long the preferred techniques of both researchers and engineers, their migration from research lab to routine industrial use has been accelerated by hardware and software improvements. The last decade has seen the widespread availability of good commercial finite element programs for an extensive range of applications. Finite Element Software for Microwave Engineering provides the first comprehensive overview of this burgeoning field. With its unique focus on current and future industrial applications rather than on mathematical methodology, this book is an invaluable complement to the existing literature on finite element methods. Directed to practicing engineers and researchers, the book describes user experience with current software, shows how existing programs can be used to solve problems not foreseen by their designers, and attempts to predict which methods may appear in the commercial products of tomorrow.
The main theme of this book is the interaction of electrons with electromagnetic waves in the presence of periodic and quasi-periodic structures in vacuum, in view of applications in the design and operation of particle accelerators. The first part of the book is concerned with the textbook-like presentation of the basic material, in particular reviewing elementary electromagnetic phenomena and electron dynamics. The second part of the book describes the current models for beam-wave interactions with periodic and quasi-periodic structures. This is the basis for introducing, in the last part of the book, a number of particle and radiation sources that rest on these principles, in particular the free-electron laser, wake-field acceleration schemes and a number of other advanced particle accelerator concepts. This second edition brings this fundamental text up-to-date in view of the enormous advances that have been made over the last decade since the first edition was published. All chapters, as well as the bibliography, have been significantly revised and extended, and the number of end-of-chapter exercises has been further increased to enhance this book's usefulness for teaching specialized graduate courses.
The Advanced Study Institute on "Theoretical Aspects and New Developments in Magneto-Optics" was held at the University of Antwerpen (R.U.C.A.), from July 16 to July 28, 1979. The Institute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert (Belgium), A.S.L.K. (Belgium), Bell Telephone Mfg. CO. (Belgium), Esso Belgium, Generale Bankmaatschappij (Belgium), General Motors (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), Metallurgie Hoboken-Over pelt (Belgium), National Science Foundation (U.S.A). A total of 60 lecturers and participants attended the Institute. Scope of the Institute The magneto-optic phenomena are due to the change of the polarizability of a substance as a result of the splitting of the quantized energy bands. Most of these phenomena were discovered during the second half of this century. The understanding of the magneto-optical effects of all kinds, however, was brought by the advent of quantum mechanics, and since then important progress has been made in many fields of experimental methods and techniques.
The purpose of the package is to answer the question 'What is the radio field strength at a certain point?' when power is radiated from a transmit ting source. Because of the complexity of the question in general, it can only be answered at present in certain idealized situations. Nevertheless it is valuable to have quantitative data available for these situations. The package is divided into two parts. In the first of these, propagation in free space and over a flat earth are dealt with. In the second, propagation over a spherical earth is considered. In the free-space situation the power density of the signal in a given direction will fall as the inverse square of the distance from the source. For propagation from a transmitting source at an arbitrary height above a perfecdy conducting flat earth, the field strength at large distances can be 3 dB higher than in free space. With a finite conduc tivity earth, the field strength will be lower than this because of the power dissipation in the earth.
This book is dedicated to the adoption of broadband microwave reflectometry (BMR)-based methods for diagnostics and monitoring applications. This electromagnetic technique has established as a powerful tool for monitoring purposes; in fact, it can balance several contrasting requirements, such as the versatility of the system, low implementation cost, real-time response, possibility of remote control, reliability, and adequate measurement accuracy. Starting from an extensive survey of the state of the art and from a clear and concise overview of the theoretical background, throughout the book, the different approaches of BMR are considered (i.e., time domain reflectometry - TDR, frequency domain reflectometry - FDR, and the TDR/FDR combined approach) and several applications are thoroughly investigated. The applications considered herein are very diverse from each other and cover different fields. In all the described procedures and methods, the ultimate goal is to endow them with a significant performance enhancement in terms of measurement accuracy, low cost, versatility, and practical implementation possibility, so as to unlock the strong potential of BMR.
During the last three decades, interest in the field of interaction of microwaves with ferrimagnetics has steadily increased. Investigations in tlris field have led to the development of a number of devices used for a variety of applications. The initial emphasis of the investigators was on the microwave behavior of ferrimagnetics placed in cavities and metallic waveguides and associated devices. This work has been presented in various books, monographs, and reviews written during the sixties. In recent years, interest in microwave propagation in ferrimagnetics has shifted from loaded waveguides to relatively new areas, e. g. , magnetostatic and magnetoelastic waves in layered structures, microwave propagation in ferrimagnetic strip lines and microstrips, etc. Such investigations are important from the viewpoint of devices such as delay lines, filters, convolvers, guided wave amplifiers, striplines, and microstrip phase shif ters, circulators, edge guided mode isolators, etc. As such, we feit the need for a text (meant for graduate students starting work in these areas as weil as practicing electrical engineers and applied physicists) which presents a coherent account of the various aspects of propagation of microwaves (electromagnetic as weil as magnetoelastic) in biased ferrimagnetics and discusses the relatively recent developments in the theory and operation of the aforementioned devices, and this book is the result. A biased ferrimagnetic is, in the mathematical sense, a complicated medium, electromagnetically as weil as elastically.
Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data. Challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, pattern classification and target recognition, visualization of high dimensional imagery.
Anyone who has operated, serviced, or designed an automobile or truck in the last few years has most certainly noticed that the age of electronics in our vehicles is here! Electronic components and systems are used for everything from the traditional entertainment system to the latest in "drive by wire", to two-way communication and navigation. The interesting fact is that the automotive industry has been based upon mechanical and materials engineering for much of its history without many of the techniques of electrical and electronic engineering. The emissions controls requirements of the 1970's are generally recognized as the time when electronics started to make their way into the previous mechanically based systems and functions. While this revolution was going on, the electronics industry developed issues and concepts that were addressed to allow interoperation of the systems in the presence of each other and with the external environment. This included the study of electromagnetic compatibility, as systems and components started to have influence upon each other just due to their operation. EMC developed over the years, and has become a specialized area of engineering applicable to any area of systems that included electronics. Many well-understood aspects of EMC have been developed, just as many aspects of automotive systems have been developed. We are now at a point where the issues of EMC are becoming more and more integrated into the automotive industry.
The fifth Conference on Ultra-Wideband Short-Pulse Electromagnetics was held in Scotland from 30 May to 2 June 2000 at the Edinburgh International Conference Centre. It formed part of the EUROEM 2000 International Conference under the chairmanship of David Parkes (DERA, Malvern) and Paul Smith (University of Dundee). It continued the series of international conferences that were held first at the Polytechnic University, Brooklyn, New York in 1992 and 1994, then in Albuquerque, New Mexico in 1996 (as part of AMEREM '96) and more recently in Tel-Aviv, Israel in 1998 (as part of EUROEM '98). The purpose of these meetings is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation, scattering from and coupling to targets of interest; to report on developments in supporting mathematical and numerical methods; and to describe current and potential future applications of the technology. |
You may like...
Core/Shell Quantum Dots - Synthesis…
Xin Tong, Zhiming M. Wang
Hardcover
R3,071
Discovery Miles 30 710
Progress in Ultrafast Intense Laser…
Kaoru Yamanouchi, Dimitrios Charalambidis
Hardcover
R3,269
Discovery Miles 32 690
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,609
Discovery Miles 56 090
Handbook of Research on Emerging Designs…
Jamal Zbitou, Mostafa Hefnawi, …
Hardcover
R8,461
Discovery Miles 84 610
|