![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
Broadband Wireless Access is a highly challenging and fast changing area of multimedia radio communications. These papers on the subject are the proceedings of the 9th Tyrrhenian Workshop, held in Lerici, Italy, September 1997. They provide a prospect on the state of the art and future development, with a sufficiently wide focus to cover technological, architectural and regulatory issues. Emphasis is given to those advances of digital signal processing techniques, microwave mono lithic integrated circuits and smart antennae that will allow the design of low cost user terminals with advanced capabilities. Specific attention is also devoted to the protocols these new terminals will use to access the radio medium, and to the kind of services that will eventually be provided to the end-user in the future. With contributions from worldwide experts, the material presented here is a timely and high-level overview of the field, and as well as being informative is a useful tool for promoting further investigation into the area of multimedia radio communications.
This book describes the background, principles, implementations, characterization, and future trends of temperature sensors made from silicon resistors in CMOS technology, including their readout circuits. Readers will benefit from the latest research of CMOS temperature sensors, and could learn about various precision analog techniques such as phase detection, continuous-time ADC, zoom ADC, FIR-DAC, dynamic element matching, OTA linearization, etc.
This book deals with microwave electronics, that is to say those components of microwave circuits that generate, amplify, detect or modulate signals. It is based on a course given in the Electrical Engineering Department of Eindhoven University since 1985 and on about twenty years of experience in the microwave field. Somewhat to my surprise I found that there were hardly any textbooks that addressed the specific properties and demands of microwave devices, including vacuum devices and their interactions with circuits. Numerous books exist on semiconductor electronic devices, dealing in an excellent way with the basic device physics, but being somewhat brief on typical micro wave aspects. On the other hand there are also many books that concentrate on electromagnetic theory and passive circuits, treating devices without reference to the underlying physics. In between there are some entirely devoted to a particular device, for example, the GaAs MESFET. With regard to tubes the situation is even worse: books that treat the basic principles are usually quite old and modern books often concentrate on specific devices, like high power tubes. So it seems that there is room for a book like this one. Its aim is to provide an elementary understanding ofmicrowave electronic devices, both vacuum and semiconductor, on the one hand in relation to the basic physics underlying their operation and on the other in relation to their circuit applications."
This is the last of three volumes of the extensively revised and updated second edition of the Handbook of Superconductivity. The past twenty years have seen rapid progress in superconducting materials, which exhibit one of the most remarkable physical states of matter ever to be discovered. Superconductivity brings quantum mechanics to the scale of the everyday world. Viable applications of superconductors rely fundamentally on an understanding of these intriguing phenomena and the availability of a range of materials with bespoke properties to meet practical needs. While the first volume covers fundamentals and various classes of materials, the second addresses processing of these into various shapes and configurations needed for applications, and ends with chapters on refrigeration methods necessary to attain the superconducting state and the desired performance. This third volume starts with a wide range of methods permitting one to characterize both the materials and various end products of processing. Subsequently, diverse classes of both large scale and electronic applications are described. Volume 3 ends with a glossary relevant to all three volumes. Key Features: Covers the depth and breadth of the field Includes contributions from leading academics and industry professionals across the world Provides hands-on familiarity with the characterization methods and offers descriptions of representative examples of practical applications A comprehensive reference, the handbook is suitable for both graduate students and practitioners in experimental physics, materials science, and multiple engineering disciplines, including electronic and electrical, chemical, mechanical, metallurgy and others.
This two-volume book provides an enriching insight into the laser, covering different types of lasers, the basic science behind the technology, their role at the cutting-edge of current scientific research, and their wide-ranging applications. With just high school physics as a prerequisite and favoring qualitative yet scientifically sound explanations over high-level mathematics, this book is aimed at a broad spectrum of readers in physics, chemistry, engineering, medicine, and biology. Its engaging and lucid presentation is enhanced with plenty of illustrations, making the world of the laser accessible to undergraduate students in the sciences and any other inquisitive readers with high school physics under their belts. Furthermore, the text is often laced with anecdotes, picked from history, that are bound to pique the minds of the readers. It is ideal for self-study or as a complement to courses on optics and optoelectronics. This volume, Part 1 of 2, explains the fundamentals of optics, what a laser is, how it works, and what is unique about the light it emits, from fundamental quantum theory through population inversion and cavity to common laser types. It is followed by Part 2 which depicts the many advances in science enabled by the laser, including spectroscopy, nonlinear optics, optical cooling and trapping, and optical tweezers, among many others, and provides a glimpse into the ways that the laser affects our lives via its uses in medicine, manufacturing, the nuclear industry, energy, defence, communication, ranging, pollution monitoring, art conservation, fashion, beauty, and entertainment.
Nanochemistry tools aid the design of Prussian blue and its analogue nanoparticles and nanocomposites. The use of such nanomaterials is now widely regarded as an alternative to other inorganic nanomaterials in a variety of scientific applications. This book, after addressing Prussian blue and its analogues in a historical context and their numerous applications over time, compiles and details the latest cutting-edge scientific research on these nanomaterials. It compiles and deatils the latest cutting-edge scientific research on these nanomaterials. The book provides an overview of the methodological concepts of the nanoscale synthesis of Prussian blue and its analogues, as well as the study and understanding of their properties and of the extent and diversity of application fields in relation to the major societal challenges of the 21st century on energy, environment, and health.
One of us (FAB) published a book Problems in Electronics with Solutions in 1957 which became well established and ran to five editions, the last revised and enlarged edition appearing in 1976. When the first edition was written it covered almost the complete undergraduate electronics courses in engin eering at universities. One book, at a price students can afford, can no longer cover an undergraduate course in electronics. It has therefore been decided to produce a book covering one important section of such a course using the experience gained and a few problems from previous editions of Problems in Electronics with Solutions. The book is based largely on problems collected by us over many years and given to undergraduate electronic and electrical engineers. Its purpose is to present the problems, together with a large number of their solutions, in the hope that it will prove valuable to undergraduates and other teachers. It should also be useful for Master's degree students in electronic and electrical engineering and physics, research workers, engineers and scientists in industry and as a reference source."
In recent decades, graphene composites have received considerable attention due to their unique structural features and extraordinary properties. 2D and 3D graphene hybrid structures are widely used in memory, microelectronic, and optoelectronic devices; energy- and power-density supercapacitors; light-emitting diodes; and sensors, batteries, and solar cells. This book covers the fundamental properties of the latest graphene-based 2D and 3D composite materials. The book is a result of the collective work of many highly qualified specialists in the field of experimental and theoretical research on graphene and its derivatives. It describes experimental methods for obtaining and characterizing samples of chemically modified graphene, details conceptual foundations of popular methods for computer modeling of graphene nanostructures, and compiles original computational techniques developed by the chapter authors. It discusses the potential application areas and modifications of graphene-based 2D and 3D composite materials and interprets the interesting physical effects discovered for the first time for graphene materials under consideration. The book is useful for graduate students and researchers as well as specialists in industrial engineering. It will also appeal to those involved in materials science, condensed matter physics, nanotechnology, physical electronics, nano- and optoelectronics.
This book is devoted to physical bases of magnetoelectronic millimetric waves. Magnetoelectronic represents a direction on a joint of physics of the magnetic phenomenainmagnetoarrangedenvironments,radiophysicsofwaveandoscilla- ? toryprocessesinlayeredscreenedbigirotropic(tensorsdielectric ? andmagnetic ? ? penetrabilities) structures, semi-conductor microelectronics and circuitry. The millimetric range gives the certain speci?city to researches. It, ?rst of all: losses andtheirgrowthwithfrequencyinspendingscreensandthemetallizedcoverings, dielectrics, semi-conductor layers, ferrite, increase in effective internal magnetic ?elds and ?elds bias, reduction of the geometrical sizes of coverings, structures andtougheningofadmissionsbymanufacturingandtheassembly,newmethodsof diagnosticsof?lmstructuresofferrite,includingnotdestroying. Promotionofresearcheswasspenttoamillimetricrangeindirections: - Developmentsofmethodsofthetheoreticalanalysisforstudyingpropertiesof varioustypesofconverters; - Developmentofvariouskindsandtypesofconverters; - Development of methods of researches of properties of waves at excitation, receptionanddistributioninlayeredstructuresofvariouskinds; - Carryingoutofexperimentalresearches; - Developmentofmethodsandmeansofnotdestroyingcontrolofparametersof ?lmstructuresofferrite; - Developmentoperatedmagnetoelectronicstructuresanddevicesoflowandhigh levelsofcapacity. In such order the theoretical and experimental material received is stated in thebook.Theseriouscontributiontoseparateresearcheshavebrought:thesenior scienti?cemployee,Dr.LepestkinA.N.(experiment,physicalmodelling);thes- enti?cemployee,Dr.MostovojA.A.(thetheory,physicalmodelling);theyounger scienti?c employee, Dr. Beginin E.N. (programming, calculations, experiments, laboratorybreadboardmodels). The basic sections of the book were read to students of physical faculty of the Saratov State University by it. In a special course "Magnetoelectronics of v vi Foreword microwaveandextremelyhighfrequencies"alsowereaccompaniedbyN.G.Cher- shevskogoincorrespondinglaboratoryinstallations,developedincourseanddegree worksofstudents. The second part of the book - "Heteromagnetic microelectronics (magne- electronics of the active devices)" which is in a stage of a writing and dev- opment of a problem, is devoted to a new direction on creation of multipurpose operated microdevices, the microsystems which are carrying out ?nished fu- tionson formationof variouskindsand spectra of signals in transistor-magnetic, ferrite-semi-conductorstructures(strengthenings,generation,mixture,parametrical effects,multiplication,division,frequencymodulation,magnetosensitivemodes).
In dem 2-bandigen Standardwerk erlautert der Autor die verschiedenen Techniken, die instrumentelle Ausrustung sowie die Bedeutung der Laserspektroskopie fur ein detailliertes Verstandnis der Struktur und Dynamik von Atomen und Molekulen. Band 2 ist den experimentellen Techniken gewidmet. Die Neuauflage wurde voellig uberarbeitet, viele Abschnitte zu aktuellen Themen wie Ultrakurzzeit-Spektroskopie, Attosekunden-Laser, Interferenzspektroskopie oder Laser-Interferometer als Detektoren fur Gravitationswellen auf den neuesten Stand gebracht.
High Frequency Communication and Sensing: Traveling-Wave Techniques introduces novel traveling wave circuit techniques to boost the performance of high-speed circuits in standard low-cost production technologies, like complementary metal oxide semiconductor (CMOS). A valuable resource for experienced analog/radio frequency (RF) circuit designers as well as undergraduate-level microelectronics researchers, this book: Explains the basics of high-speed signaling, such as transmission lines, distributed signaling, impedance matching, and other common practical RF background material Promotes a dual-loop coupled traveling wave oscillator topology, the trigger mode distributed wave oscillator, as a high-frequency multiphase signal source Introduces a force-based starter mechanism for dual-loop, even-symmetry, multiphase traveling wave oscillators, presenting a single-loop version as a force mode distributed wave antenna (FMDWA) Describes higher-frequency, passive inductive, and quarter-wave-length-based pumped distributed wave oscillators (PDWOs) Examines phased-array transceiver architectures and front-end circuits in detail, along with distributed oscillator topologies Devotes a chapter to THz sensing, illustrating a unique method of traveling wave frequency multiplication and power combining Discusses various data converter topologies, such as digital-to-analog converters (DACs), analog-to-digital converters (ADCs), and GHz-bandwidth sigma-delta modulators Covers critical circuits including phase rotators and interpolators, phase shifters, phase-locked loops (PLLs), delay-locked loops (DLLs), and more It is a significantly challenging task to generate and distribute high-speed clocks. Multiphase low-speed clocks with sharp transition are proposed to be a better option to accommodate the desired timing resolution. High Frequency Communication and Sensing: Traveling-Wave Techniques provides new horizons in the quest for greater speed and performance.
Nanostructured electrode materials have exhibited unrivaled electrochemical properties in creating elite supercapacitors. Morphology Design Paradigm for Supercapacitors presents the latest advances in the improvement of supercapacitors, a result of the incorporation of nanomaterials into the design - from zero-dimensional to three-dimensional, and microporous to mesoporous. The book includes a comprehensive description of capacitive practices at the levels of sub-atomic and nanoscales. These have the ability to enhance device performance for an extensive assortment of potential applications, including consumer electronics, wearable gadgets, hybrid electric vehicles, stationary and industrial frameworks. Key Features: Provides readers with a clear understanding of the implementation of these materials as electrodes in electrochemical supercapacitors. Covers recent material designs and an extensive scope of electrode materials such as 0D to 3D. Explores recent nanostructured-system material designs that have been created and tested in supercapacitor configurations. Considers microporous to mesoporous supercapacitor electrode materials. Features the impact of nanostructures on the properties of supercapacitors, including specific capacitance, cycle stability, and rate capability.
An elective course in the final-year BEng progamme in electronic engin eering in the City Polytechnic of Hong Kong was generated in response to the growing need of local industry for graduate engineers capable of designing circuits and performing measurements at high frequencies up to a few gigahertz. This book has grown out from the lecture and tutorial materials written specifically for this course. This course should, in the opinion of the author, best be conducted if students can take a final-year design project in the same area. Examples of projects in areas related to the subject matter of this book which have been completed successfully in the last two years that the course has been run include: low-noise amplifiers, dielectric resonator-loaded oscillators and down converters in the 12 GHz as well as the 1 GHz bands; mixers; varactor-tuned and non-varactor-tuned VCOs; low-noise and power amplifiers; and filters and duplexers in the 1 GHz, 800 MHz and 500 MHz bands. The book is intended for use in a course of forty lecture hours plus twenty tutorial hours and the prerequisite expected of the readers is a general knowledge of analogue electronic circuits and basic field theory. Readers with no prior knowledge in high-frequency circuits are recom mended to read the book in the order that it is arranged. ~ ______ In_t_ro_d_u_c_tl_*o_n ______ ~1 ~ 1.
This book presents a modern theory of so-called weak spatial dispersion (WSD) in composite media of optically small inclusions without natural magnetism and optical nonlinearity. WSD manifests in two important phenomena called bianisotropy and artificial magnetism, whose microscopic origin is thoroughly studied in this book. The theory of this book is applicable to the natural media with WSD, such as chiral materials. However, emphasis is given to artificial media, too, with the idea to engineer needed electromagnetic properties. The text describes a homogenization model of effectively continuous media with multipole electromagnetic response, taking into account the interface effects. Another model is developed for so-called metamaterials in which artificial magnetism can be a resonant phenomenon and may result in the violation of Maxwell's boundary conditions and other challenges. The book will hopefully improve the understanding of WSD and help readers to correctly describe and characterize metamaterials.
Die mobile Funkkommunikation ist einer der Wachstumsmarkte unserer Zeit. Fur die Planung zellularer Mobilfunknetze werden dabei verlasstliche Werkzeuge benoetigt, deren Benutzung und Weiterentwicklung nur bei Kenntnis aller Grundlagen und der verwendeten Loesungsverfahren erfolgreich sein kann. Der vorliegende Text versucht, diese grundlegenden Kenntnisse fur einige der wesentlichen Teilaufgaben in der Funknetzplanung zu vermitteln. In der Vielzahl ausgezeichneter Bucher zu den primar nachrichtentechnischen Aspekten des Mobilfunks wird der Beschreibung und Analyse des Funkkanals zwischen den Antennentoren ein vergleichsweise geringer Rahmen beigemessen. Ziel des vorliegenden Buches ist es, diese Lucke zu fullen. Da sich die Charakterisierung des Funkkanals fur verschiedene Funksysteme nicht oder nur wenig unterscheidet, lassen sich die meisten der eroerterten Grundlagen und Verfahren auch auf andere Funksysteme, wie z.B. Rundfunk oder Richtfunk, anwenden.
In recent decades, there has been a phenomenal growth in the field of photonic crystal research and has emerged as an interdisciplinary area. Photonic crystals are usually nanostructured electromagnetic media consisting of periodic variation of dielectric constant, which prohibit certain electromagnetic wave frequency ranges called photonic bandgaps to propagate through them. Photonic crystals elicited numerous interesting features by unprecedented control of light and their exploitation is a promising tool in nanophotonics and designing optical components. The book 'Advances in Photonic Crystals and Devices' is designed with 15 chapters with introductory as well as research and application based contents. It covers the following highlighted features: Basics of photonic crystals and photonic crystal fibers Different theoretical as well as experimental approaches Current research advances from around the globe Nonlinear optics and super-continuum generation in photonic crystal fibers Magnetized cold plasma photonic crystals Liquid crystal defect embedded with graphene layers Biophysics and biomedical applications as optical sensors Two-dimensional photonic crystal demultiplexer Optical logic gates using photonic crystals A large number of references The goal of this book is to draw the background in understanding, fabrication and characterization of photonic crystals using a variety of materials and their applications in design of several optical devices. Though the book is useful as a reference for the researchers working in the area of photonics, optical computing and fabrication of nanophotonic devices, it is intended for the beginners like students pursuing their masters' degree in photonics.
The Fourth Edition of the Handbook of Conducting Polymers, Two-Volume Set continues to be the definitive resource on the topic of conducting polymers. Completely updated with an extensive list of authors that draws on past and new contributors, the book takes into account the significant developments both in fundamental understanding and applications since publication of the previous edition. One of two volumes comprising the comprehensive Handbook, Conjugated Polymers: Perspective, Theory, and New Materials features new chapters on the fundamental theory and new materials involved in conducting polymers. It discusses the history of physics and chemistry of these materials and the theory behind them. Finally, it details polymer and materials chemistry including such topics as conjugated block copolymers, metal-containing conjugated polymers, and continuous flow processing. Aimed at researchers, advanced students, and industry professionals working in materials science and engineering, this book covers fundamentals, recent progress, and new materials involved in conducting polymers and includes a wide-ranging listing of comprehensive chapters authored by an international team of experts.
This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.
The technique of elastic scattering of electromagnetic radiation has been used as a diagnostic tool in various disciplines of science,engineering,medicine and agriculture.The investigations relating to above problems may be divided in three categories:(i)Scattering by a single particle,(ii)Scattering by a tenuous system of uncorrelated scatterers and (iii)Scattering by a concentrated dispersion of scatterers.In the proposed book,the primary effort is to examine the analytic solutions of the scattering problems of types (i) and (ii) in diverse backgrounds.For the completeness of the book,analytic solutions in scattering situations of type (iii) are also covered in reasonable details.
The nonlinear behavior of nitrogen and the passivation effect of hydrogen in dilute nitrides open the way to the manufacture of a new class of nanostructured devices with in-plane variation of the optical band gap. This book addresses the modifications of the electronic structure and of the optical and structural properties induced in these technologically important semiconductors by atomic hydrogen irradiation. The book comprises discussions on experimental results from several techniques, enriched by state-of-the-art theoretical studies aimed at clarifying the origin of hydrogenation effects that lead to the discovery of specific nitrogen-hydrogen complexes. It presents techniques, such as infrared absorption spectroscopy, synchrotron radiation, and nuclear reaction analysis, which have indeed been crucial for addressing the physical origin of hydrogenation effects and their role in fine structural characterization. The book is not a simple assembly of the contributions of different groups on the subject; it rather tells the complete story of the amazing effects of hydrogen irradiation from the first observations to the discovery of their origin and to potential technology transfer. The primary scope of the book is to guide PhD students and new scientists into the field and to inspire similar analysis approaches in other fields.
This book provides an overview on nanostructured thermoelectric materials and devices, covering fundamental concepts, synthesis techniques, device contacts and stability, and potential applications, especially in waste heat recovery and solar energy conversion. The contents focus on thermoelectric devices made from nanomaterials with high thermoelectric efficiency for use in large scale to generate megawatts electricity. Covers the latest discoveries, methods, technologies in materials, contacts, modules, and systems for thermoelectricity. Addresses practical details of how to improve the efficiency and power output of a generator by optimizing contacts and electrical conductivity. Gives tips on how to realize a realistic and usable device or module with attention to large scale industry synthesis and product development. Prof. Zhifeng Ren is M. D. Anderson Professor in the Department of Physics and the Texas Center for Superconductivity at the University of Houston. Prof. Yucheng Lan is an associate professor in Morgan State University. Prof. Qinyong Zhang is a professor in the Center for Advanced Materials and Energy at Xihua University of China.
This book addresses material growth, device fabrication, device application, and commercialization of energy-efficient white light-emitting diodes (LEDs), laser diodes, and power electronics devices. It begins with an overview on basics of semiconductor materials, physics, growth and characterization techniques, followed by detailed discussion of advantages, drawbacks, design issues, processing, applications, and key challenges for state of the art GaN-based devices. It includes state of the art material synthesis techniques with an overview on growth technologies for emerging bulk or free standing GaN and AlN substrates and their applications in electronics, detection, sensing, optoelectronics and photonics. Wengang (Wayne) Bi is Distinguished Chair Professor and Associate Dean in the College of Information and Electrical Engineering at Hebei University of Technology in Tianjin, China. Hao-chung (Henry) Kuo is Distinguished Professor and Associate Director of the Photonics Center at National Chiao-Tung University, Hsin-Tsu, Taiwan, China. Pei-Cheng Ku is an associate professor in the Department of Electrical Engineering & Computer Science at the University of Michigan, Ann Arbor, USA. Bo Shen is the Cheung Kong Professor at Peking University in China.
RF power amplifiers are implemented in communication, semiconductor wafer processing, magnetic resonance imaging (MRI), and radar systems to produce RF signal with the desired characteristics to perform several critical tasks in the entire system. They can be designed to operate in linear or switch-mode, depending on the specific application. This book explores the design and implementation methods for both linear and switch-mode amplifiers with real world engineering problems. The text discusses phased controlled switch-mode amplifiers and distortion and modulation effects in RF amplifiers. It illustrates the interface and integration of components and sub-systems for RF amplifiers. The material is further reinforced with MATLAB design files.
This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell's equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor. Robert Robson has held professorial positions in Japan, the USA and Australia, and was an Alexander von Humboldt Fellow at several universities in Germany. He is a Fellow of the American Physical Society. Ronald White is Professor of Physics and Head of Physical Sciences at James Cook University, Australia. Malte Hildebrandt is Head of the Detector Group in the Laboratory of Particle Physics at the Paul Scherrer Institut, Switzerland.
Introduction to PCM Telemetering Systems, Third Edition summarizes the techniques and terminology used in sending data and control information between users and the instruments that collect and process the data. Fully revised, it gives an overall systems introduction to the relevant topics in three primary areas: system interfaces; data transport, timing, and synchronization; and data transmission techniques. Integrating relevant information about the process at all levels from the user interface down to the transmission channel, this will also include how designers apply relevant industry and government standards at each level in this process. Homework problems are included at the end of each chapter. |
You may like...
Radio Frequency and Microwave Power…
Andrei Grebennikov
Hardcover
RF / Microwave Circuit Design for…
Ulrich L. Rohde, Matthias Rudolph
Hardcover
R4,952
Discovery Miles 49 520
Handbook of Research on Emerging Designs…
Jamal Zbitou, Mostafa Hefnawi, …
Hardcover
R8,027
Discovery Miles 80 270
Principles and Applications of…
Changzhi Li, Mohammad Tofighi, …
Hardcover
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,317
Discovery Miles 53 170
|