![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book presents a novel, automated, accurate and unified scheme to design and determine the performance characteristics of standalone planar, spiral inductors and multiple coupled planar spiral inductors (as in embedded transformers), for RF/microwave MMIC designers. The author demonstrates with a set of analysis/design examples a novel scheme that exploits judiciously the existing transmission theory and concepts, organizing and condensing available, scattered information/knowledge about planar spiral inductor, embedded planar transformer and planar antenna design and performance evaluation, into one coherent and unified electronic circuit model easily used by radio frequency electronic circuit engineers. A dedicated chapter contains an exhaustive (19) set of design examples. Presents a bottom-up scheme, starting with Maxwell's equations of classical electrodynamics and transmission line theory (Telegrapher's equation), specifically microstrips; Demonstrates design of standalone planar, spiral inductors and multiple coupled planar spiral inductors; Includes a set of ready-to-use, C executables (for both Linux and Windows) , that accept predefined input parameters for each of the sub-circuits discussed and generate SPICE netlists for the equivalent electrical circuit; Automates execution of multi-step design calculations to guarantee their accuracy and reliability.
This book focuses on the ellipsoidal function, which serves as an evolution and extension of the circular function (trigonometric function) and elliptic function. It presents an in-depth discussion of the ellipsoidal function (algebra) theory and the conformal mapping (geometry) theory of the ellipsoid function, demonstrating the outstanding performance of the ellipsoid function response filter. Applications of the ellipsoidal function include the capacitance of ellipsoidal conductors and the surface area of ellipsoids, which in turn correspond to ellipsoidal integrals of the first kind and the second kind, respectively. The book offers a valuable reference guide for undergraduates, graduate students and researchers in the related fields.
Electronic Filter Analysis and Synthesis helps you save time and effort in writing CAD and analysis programs for electronic filters, and provides explicit details on how to synthesize lowpass, bandpass, bandstop, and highpass realizations for passive, active, digital and switched capacitors.
Covers biological and health effects including oxidative stress, DNA damage, reproductive effects of mobile phones/antennas (2G, 3G, 4G), cordless phones and Wi-Fi Describes effects induced by real-life exposures by commercially available devices and antennas Illustrates biophysical and biochemical mechanisms aiming to fill the gap between recorded experimental and epidemiological findings, and their explanations Explore experimental and epidemiological facts, mechanisms of action, explanations and protection tips
Few people know what wandering spurs are; fewer still know how to get rid of them. This book, which is written by those who raised awareness of wandering spurs, explained how they arise, and invented ways to get rid of them, contains valuable insights, analytical techniques and examples that will enable the reader to become an expert in the area. The book is aimed at circuit design professionals who need to ensure that their designs are not compromised by wandering spurs. In addition to insights, theory, and analysis, it contains practical circuit solutions, the performance of which are characterized experimentally. This book explains-using simulation, analysis, and experimental measurements-what wandering spurs are, how they arise, how to characterize them and, most importantly, how to get rid of them. The authors present not only theoretical analysis and simulation strategies, but also provide an overview of spectral analysis techniques for studying the phenomenon and convincing experimental results from both commercially available and custom-designed monolithic synthesizers. Explains what wandering spurs are and how they differ qualitatively from the well-known fixed spurs that plague fractional-N frequency synthesizers; Provides analytical and simulation methods to study wandering spurs and original analysis of the cause of this recently reported spectral phenomenon; Presents and analyses theoretical designs based on a conventional MASH 1-1-1 to mitigate wandering spurs; Describes measured performance for the discussed designs, confirming their effectiveness in mitigating wandering spurs.
The book gives a detailed description of optical wireless communication (OWC), including optical laser communication, visible light communication, ultraviolet communication, underwater optical communication and future communication technologies. To achieve an integration between theory and practice, the book avoids tedious mathematical deductions and includes theoretical materials as exercises. Most of the exercises are originated from published journal articles. These exercises will aid the readers in understanding the basic concept and methods and evaluating their knowledge acquisition in the field of OWC. The book is structured into Ten chapters that covers main aspects of OWC: - Optical wireless communication system - Coherent optical communication - Modulation, demodulation, and coding - Atmospheric channel, channel estimation, and channel equalization - White LED communication - Underwater laser communication - Ultraviolet communication - Acquisition, aiming, and tracking technology - Partially coherent optical transmission - Optical communication in the future The book is a suitable reference for undergraduate or postgraduate students majored in communication engineering, electronic information engineering or computer science, as well as the engineers and technicians in related fields.
Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data. Challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, pattern classification and target recognition, visualization of high dimensional imagery.
This extremely well organized introduction focuses on the special interactions that occur between circuits and devices. Understanding these interactions leads to an understanding of design and performance characteristics of solid-state microwave amplifiers and oscillators. The text is presented in three roughly equal sections, with each of the first two sections laying the groundwork for the third. The first five chapters present a detailed exposition of microwave circuits, their parameters, and how they are characterized. Topics discussed include transmission lines, waveguides, microstrip lines, Smith Chart analysis, linear network parameters, resonator-transmission line coupling and filters, and more. The discussion of solid-state devices, which constitutes the second part of the book, begins with sufficient theory to understand the operating principles of the devices discussed, including: Schottky barrier diodes, microwave transistors, varactor diodes, IMPATT diodes, and Gunn diodes. The final part of the book concerns the large signal effects produced in amplifiers and oscillators when solid-state devices are embedded in microwave circuits. Extended discussions include: transistor amplifier properties; the behavior of two-terminal negative resistance amplifiers with amplitude dependent negative resistance and susceptance; stability and locking characteristics of oscillators; and fundamental noise properties of amplifiers and the phase and amplitude noise of oscillators. With its dual emphasis on linear and nonlinear characteristics and a large number of completely worked-out examples, Microwave Devices, Circuits and Their Interaction is perfectly suited as a textbook for senior orfirst-year graduate courses. It is also a valuable tool for practicing engineers and scientists who wish to increase their understanding of microwave systems.
This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.
This book presents posits a solution to the current limitations in global connectivity by introducing a global laser/optical communication system using constellation satellites, UAVs, HAPs and Balloons. The author outlines how this will help to satisfy the tremendous increasing demand for data exchange and information between end-users worldwide including in remote locations. The book provides both fundamentals and the advanced technology development in establishing worldwide communication and global connectivity using, (I) All-Optical technology, and (ii) Laser/Optical Communication Constellation Satellites (of different types, sizes and at different orbits), UAVs, HAPs (High Altitude Platforms) and Balloons. The book discusses step-by-step methods to develop a satellite backbone in order to interconnect a number of ground nodes clustered within a few SD-WAN (software-defined networking) in a wide area network (WAN) around the world in order to provide a fully-meshed communication network. This book pertains to anyone in optical communications, telecommunications, and system engineers, as well as technical managers in the aerospace industry and the graduate students, and researchers in academia and research laboratory. Proposed a solution to the limitations in global connectivity through a global laser/optical communication system using constellation satellites, UAVs, HAPs and Balloons; Provides both fundamentals and the advanced technology development in establishing global communication connectivity using optical technology and communication constellation satellites; Includes in-depth coverage of the basics of laser/optical communication constellation satellites.
The measurement and characterisation of surface topography is crucial to modern manufacturing industry. The control of areal surface structure allows a manufacturer to radically alter the functionality of a part. Examples include structuring to effect fluidics, optics, tribology, aerodynamics and biology. To control such manu-facturing methods requires measurement strategies. There is now a large range of new optical techniques on the market, or being developed in academia, that can measure areal surface topography. Each method has its strong points and limitations. The book starts with introductory chapters on optical instruments, their common language, generic features and limitations, and their calibration. Each type of modern optical instrument is described (in a common format) by an expert in the field. The book is intended for both industrial and academic scientists and engineers, and will be useful for undergraduate and postgraduate studies.
Distributed amplification is one of the more powerful yet curiously under-utilised tools available to today's designers. In the hands of savvy engineers, distributed amplification allows the simultaneous optimisation of gain-bandwidth, phase linearity, and noise figure. In addition, at optical frequencies distributed amplifiction reduces dependence on temperature and signal polarisation. This work sets out to demystify this powerful technology as it surveys the current state-of-the-art with an emphasis on practical applications. From historical perspectives and theory to device design and implementation, "Fundamentals of Distributed Amplification" covers everything needed to integrate superior performance amplifiers into FETs, vacuum and parametric devices, semiconductor lasers, transistors, and many other devices. In addition to its coverage of the principles of distributed amplification, this detailed reference: develops thorough derivations of the relevant equations for distributed amplifiers, based on unilateral models of active devices; generates analysis based on bilateral models to account for reverse isolation, transient threshold, and tightly coupled systems; and discusses transient response and amplifier implementation in detail. The book also features a special, comprehensive section on developments in distributed optical amplifiers, including traveling wave semiconductor laser amplifiers and distributed erbium-doped fiber amplifiers. Researchers, microwave and device engineers, students, teachers of university courses and intensive industry short courses, should all find this book useful.
This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.
An explanation of behavioural modelling of nonlinear RF and microwave devices, and a presentation of a powerful curve fitting technique that can be used to describe the behaviour and range of microwave components as a function of multiple independent variables. It features easily-understood mathematical formulae. Using the author's behavioural modelling methodology, you should be able to generate equations that provide accurate and acceptable reproductions of nonlinear RF and microwave device performance under various conditions. Specifically, you should be able to obtain more accurate representations of saturation and cut-off behaviour; develop more accurate transistor models to generate improved harmonic power output data as a function of power input ranging from small signal to heavy compression, and bias levels ranging from pinch off to maximum allowable current; gain a unified approach to amplifier and transistor characterization of compression characteristic, 1 dB compression point, saturated power output and 3rd order intercept point; and create trade spaces for optimization of sub-system design. The book covers how behavioural modelling is used for bipolar and MESFET device. The accompanying software contains formulae from the text. System requirements: PC-compatible Windows 95/98 with Excel 7.0 or higher; a 486 processor or higher; 16 MB RAM and 1.5 MB hard disk space.
This book introduces readers to the polarimetric synthetic aperture radar (PolSAR) system, its information processing, and imaging applications. The content is divided into three main parts: Part I, on the research scope of PolSAR, addresses the underlying theory and system design, polarimetric SAR interferometry (PolInSAR), compact PolSAR, and calibration of PolSAR. Part II, which focuses on information processing, highlights the new theories and methods used in PolSAR, such as statistical properties analysis for images, speckle reduction, image enhancement, polarimetric target decomposition, and classification of PolSAR target detection. In turn, Part III, on the applications of polarimetric SAR, discusses the geophysical parameter retrieval of PolSAR data, polarimetric interferometric SAR information processing, compact polarimetric interferometric SAR information processing, and the effects of terrain tilt in azimuth direction on PolSAR data. The book provides a comprehensive and systematic guide to the system, integrating theory and practice, and has a highly application-oriented focus. Presenting new theories, methods and achievements made in polarimetric microwave imaging in recent years, it offers a valuable asset for researchers, engineers and scientists in the area of remote sensing and radar imaging. It can also be used as a reference book for university educators and graduate students.
This book presents the design requirements of antenna integration for modern commercial devices such as smartphones, dongles, and access points. Practical use-case scenarios of smartphone and the design process of the antenna system for the same are highlighted. The feasibility of scaling up sub-6GHz to mmWave antennas is also discussed in detail followed by a plethora of design examples which could be panel mounted to modern-day commercial smartphones. The unique requirement of gain switchability is introduced with feasible practical antenna designs. High efficiency antennas for 5G base stations is introduced along with a design example on planar all-metallic antenna. Beam switchability requirement for base station is illustrated with a couple of compact antenna system examples. Variety of feeding techniques for mmWave antennas is elaborated in this book. Finally, low-cost antenna designs for future wireless devices are illustrated.
This book presents the proceedings of the 4th International Conference on Wireless Intelligent and Distributed Environment for Communication (WIDECOM 2021), which took place at University of KwaZulu-Natal, South Africa, October 13-15, 2021. The book addresses issues related to new dependability paradigms, design, and performance of dependable network computing and mobile systems, as well as issues related to the security of these systems. The main tracks include infrastructure, architecture, algorithms, and protocols. The goal of the conference is to provide a forum for researchers, students, scientists and engineers working in academia and industry to share their experiences, new ideas and research results in the above-mentioned areas.
This book covers all the major types of microwave sources, their distinguishing features, the primary research issues and the fundamental limits on performance. The book traces the technological trends that form the historical foundations of the field and compares the capabilities of HPM to those of conventional microwaves. It is also a text of reference for research into fast photoconducting switching, electromagnetic missiles and pulse compression.
The field of electromagnetic sensitivity is the new epidemic of the 21st century, and can cause disease of the automatic nerve system in any part of the body. This is as a result of chemical sensitivity, in which over 80,000 chemicals are involved, resulting in innumerable combinations. A cursory understanding of the combinations can help clinicians partially understand the associated problems and thus help in the diagnosis and treatment of electromagnetic sensitivities. But a basic understanding of environmentally induced illness and healing must first be understood by the clinicians before diseases occur such as cardiac arrhythmia, muscle spasms, and nerve pain. Key Features: Describes how an understanding of the vast combinations of electrical and chemical sensitivities will help in the diagnosis and treatment of electromagnetic sensitivities Reveals the complexity and multi-faceted presentation often seen in chemical sensitivity and chronic degenerative disease cases Provides information backed up by rigorous scientific data including hundreds of tables and figures as online resources Features a Dedication to Robert Becker, MD, an orthopedic surgeon who was one of the first clinicians to recognize the significance of EMF in medicine and surgery, and also to his assistant Andrew Marino, PhD, who helped develop the basic science of orthopedic electromagnet healing
This book provides an overview of the current state of the art in novel piezo-composites based on ferroelectrics. Covering aspects ranging from theoretical materials simulation and manufacturing and characterization methods, to the application and performance of these materials, it focuses on the optimization of the material parameters. Presenting the latest findings on modern composites and highlighting the applications of piezoelectric materials for sensors, transducers and hydro-acoustics, the book addresses an important gap in the physics of active dielectrics and materials science and describes new trends in the research on ferroelectric composites.
This comprehensive handbook provides readers with a single-source reference to the theoretical fundamentals, physical mechanisms and principles of operation of all known microwave devices and various radars. The author discusses proven methods of computation and design development, process, schematic, schematic-technical and construction peculiarities of each breed of the microwave devices, as well as the most popular and original technical solutions for radars. Coverage also includes the history of creation of the most widely used radars, as well as guidelines for their potential upgrading. Offers readers a comprehensive, systematized view of all contemporary knowledge, acquired during the last 20 years, on radars and related disciplines; Provides a single-source reference on the physical mechanisms and principles of operation of the basic components of radio location devices, including theoretical aspects of designing the necessary, high-efficiency electronic devices and systems, as well as key, practical methods of computation and design; Presents complex topics using simple language, minimizing mathematics.
This book will provide readers with a good overview of some of most recent advances in the field of High-Z materials. There will be a good mixture of general chapters in both technology and applications in opto-electronics, X-ray detection and emerging optoelectronics applications. The book will have an in-depth review of the research topics from world-leading specialists in the field.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional -conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
This book presents the emerging regime of zero refractive index photonics, involving metamaterials that exhibit effectively zero refractive index. Metamaterials are artificial structures whose optical properties can be tailored at will. With metamaterials, intriguing and spellbinding phenomena like negative refraction and electromagnetic cloaking could be realized, which otherwise seem unnatural or straight out of science fiction. Zero index metamaterials are also seen as a means of boosting nonlinear properties and are believed to have strong prospects for being useful in nonlinear optical applications. In summary, this book highlights almost everything currently available on zero index metamaterials and is useful for professionally interested and motivated readers.
This book presents a variety of techniques using high-frequency (RF) and time-domain measurements to understand the electrical performance of novel, modern transistors made of materials such as graphene, carbon nanotubes, and silicon-on-insulator, and using new transistor structures. The author explains how to use conventional RF and time- domain measurements to characterize the performance of the transistors. In addition, he explains how novel transistors may be subject to effects such as self-heating, period-dependent output, non-linearity, susceptibility to short-term degradation, DC-invisible structural defects, and a different response to DC and transient inputs. Readers will understand that in order to fully understand and characterize the behavior of a novel transistor, there is an arsenal of dynamic techniques available. In addition to abstract concepts, the reader will learn of practical tips required to achieve meaningful measurements, and will understand the relationship between these measurements and traditional, conventional DC characteristics. |
You may like...
Microwave Wireless Communications - From…
Antonio Raffo, Giovanni Crupi
Hardcover
R2,693
Discovery Miles 26 930
Principles and Applications of…
Changzhi Li, Mohammad Tofighi, …
Hardcover
Surrogate Modeling For High-frequency…
Slawomir Koziel, Anna Pietrenko-Dabrowska
Hardcover
R3,774
Discovery Miles 37 740
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,317
Discovery Miles 53 170
|