![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
Microwave and millimeter-wave (mm-wave) circuits and systems have been widely employed in various emerging technologies such as 5G and beyond wireless mobile communication systems, autonomous driving, electronic warfare, and radar systems. To better understand the benefits, challenges, and opportunities of this technology, further study is required. The Handbook of Research on Emerging Designs and Applications for Microwave and Millimeter Wave Circuits describes the latest advances in microwave and mm-wave applications and provides state-of-the-art research in the domain of microwave, mm-wave, and THz devices and systems. Covering key topics such as antennas, circuits, propagation, and energy harvesting, this major reference work is ideal for computer scientists, industry professionals, researchers, academicians, practitioners, scholars, instructors, and students.
Contemporary high-frequency engineering design heavily relies on full-wave electromagnetic (EM) analysis. This is primarily due to its versatility and ability to account for phenomena that are important from the point of view of system performance. Unfortunately, versatility comes at the price of a high computational cost of accurate evaluation. Consequently, utilization of simulation models in the design processes is challenging although highly desirable. The aforementioned problems can be alleviated by means of surrogate modeling techniques, the most popular of which are data-driven models. Although a large variety of methods are available, they are all affected by the curse of dimensionality. This is especially pronounced in high-frequency electronics, where typical system responses are highly nonlinear. Construction of practically useful surrogates covering wide ranges of parameters and operating conditions is a considerable challenge.Surrogate Modeling for High-Frequency Design presents a selection of works representing recent advancements in surrogate modeling and their applications to high-frequency design. Some chapters provide a review of specific topics such as neural network modeling of microwave components, while others describe recent attempts to improve existing modeling methodologies. Furthermore, the book features numerous applications of surrogate modeling methodologies to design optimization and uncertainty quantification of antenna, microwave, and analog RF circuits.
Substrate integrated waveguide (SIW) technology is a twenty-first century transmission line that has evolved recently to open new doors to the development of efficient circuits and devices operating in the microwave and millimeter-wave frequency range. Microstrip circuits and devices are inefficient at high frequency applications and require very stringent manufacturing tolerances when used to implement microwave and millimeter-wave components. This is as a result of the fact that wavelengths are short at higher frequencies. Waveguide circuits and devices are preferred for higher frequency applications, but they are expensive and difficult to manufacture. It is also very challenging to integrate a waveguide device with planar devices in its vicinity. The SIW bridges the gap between the traditional air-filled waveguide and planar transmission lines such as microstrip. Practical Approach to Substrate Integrated Waveguide (SIW) Diplexer: Emerging Research and Opportunities is an essential reference source that discusses the development of efficient circuits and devices operating in the microwave and millimeter-wave frequency range through the use of substrate integrated waveguides. Featuring research on topics such as microstrip resonators, circuit model analysis, and quality factor extraction, this book is ideally designed for researchers, engineers, scientists, developers, scholars, practitioners, educators, policymakers, and students.
Wireless communications have become invaluable in the modern world. The market is going through a revolutionary transformation as new technologies and standards endeavor to keep up with demand for integrated and low-cost mobile and wireless devices. Due to their ubiquity, there is also a need for a simplification of the design of wireless systems and networks. The Handbook of Research on Advanced Trends in Microwave and Communication Engineering showcases the current trends and approaches in the design and analysis of reconfigurable microwave devices, antennas for wireless applications, and wireless communication technologies. Outlining both theoretical and experimental approaches, this publication brings to light the unique design issues of this emerging research, making it an ideal reference source for engineers, researchers, graduate students, and IT professionals.
This book is an introduction to microwave and RF signal modeling and measurement techniques for field effect transistors. It assumes only a basic course in electronic circuits and prerequisite knowledge for readers to apply the techniques and improve the performance of integrated circuits, reduce design cycles and increase their chance at first time success. The first chapters offer a general overview and discussion of microwave signal and noise matrices, and microwave measurement techniques. The following chapters address modeling techniques for field effect transistors and cover models such as: small signal, large signal, noise, and the artificial neural network based.
Microwave tubes are vacuum electron devices used for the generation and amplification of radio frequencies in the microwave range. An established technology area, the use of tubes remains essential in the field today for high-power applications. The culmination of the author's 50 years of industry experience, this authoritative resource offers you a thorough understanding of the operations and major classes of microwave tubes. Minimizing the use of advanced mathematics, the book places emphasis on clear qualitative explanations of phenomena. This practical reference serves as an excellent introduction for newcomers to the field and offers established tube engineers a comprehensive refresher. Professionals find coverage of all major tube classifications, including klystrons, traveling wave tubes (TWTs), magnetrons, cross field amplifiers, and gyrotrons.
Radio Frequency and Microwave Power Amplifiers are finding an increasingly broad range of applications, particularly in communications and broadcasting, but also in the industrial, medical, automotive, aviation, military, and sensing fields. Each application has its own design specifications, for example, high linearity in modern communication systems or high efficiency in broadcasting, and, depending on process technology, capability to operate efficiently at very high frequencies, such as 77 GHz and higher for automotive radars. Advances in design methodologies have practical applications in improving gain, power output, bandwidth, power efficiency, linearity, input and output impedance matching, and heat dissipation. This essential reference presented in two volumes aims to provide comprehensive, state-of-the-art coverage of RF and microwave power amplifier design with in-depth descriptions of current and potential future approaches. Volume 1 covers principles, device modeling and matching networks, while volume 2 focuses specifically on efficiency and linearity enhancement techniques. The volumes will be of particular interest to engineers and researchers engaged in RF and microwave amplifier design, and those who are interested in systems incorporating RF and microwave amplifiers.
Achieve first-time-success designing RF and microwave amplifiers and oscillators using the iterative synthesis techniques provided in this practical resource. The book introduces new approaches to help you estimate the 1dB compression point of class A and class B linear circuits, initialize the fundamental component voltages and currents in a harmonic balance simulator, and more easily generate load-pull contours for class A and class B transistors. Considered as a generalization of the Cripps approach, this independently developed method can be applied easily to control or predict the output power in single- or multi-stage amplifiers. Changes in the transistor's configuration, as well as feedback and loading can also be handled smoothly. This book helps you: The book also includes all of the design principles, theory, and background from the well-received first edition. It is an excellent resource for amplifier and oscillator designers, RF and microwave engineers, and university students.
Radio Frequency and Microwave Power Amplifiers are finding an increasingly broad range of applications, particularly in communications and broadcasting, but also in the industrial, medical, automotive, aviation, military, and sensing fields. Each application has its own design specifications, for example, high linearity in modern communication systems or high efficiency in broadcasting, and, depending on process technology, capability to operate efficiently at very high frequencies, such as 77 GHz and higher for automotive radars. Advances in design methodologies have practical applications in improving gain, power output, bandwidth, power efficiency, linearity, input and output impedance matching, and heat dissipation. This essential reference presented in two volumes aims to provide comprehensive, state-of-the-art coverage of RF and microwave power amplifier design with in-depth descriptions of current and potential future approaches. Volume 1 covers principles, device modeling and matching networks, while volume 2 focuses specifically on efficiency and linearity enhancement techniques. The volumes will be of particular interest to engineers and researchers engaged in RF and microwave amplifier design, and those who are interested in systems incorporating RF and microwave amplifiers.
Volume I: A low-dimensional magnet is key to the next-generation of electronic devices. In some aspects, low dimensional magnets refer to nanostructured magnets or single-molecule magnets. They are widely used in biomedicine, technology, industries, and environmental remediation. Emerging Applications of Low Dimensional Magnets covers current state-of-the-art progress in ferromagnetic materials, experimental studies of nanomaterials-based spintronics, and directions for future approaches, applications, and devices. Experts from a variety of areas such as biomedical engineering, materials science, nanotechnology, and electronic engineering have contributed to this handbook making it the most up-to-date and interdisciplinary reference of its kind in the field of low dimensional magnets. Volume II: Low-dimensional magnetic materials find their wide applications in many areas, including spintronics, memory devices, catalysis, biomedical, sensors, electromagnetic shielding, aerospace, and energy. This book provides a comprehensive discussion on magnetic nanomaterials for emerging applications. Fundamentals along with applications of low-dimensional magnetic materials in spintronics, catalysis, memory, biomedicals, toxic waste removal, aerospace, telecommunications, batteries, supercapacitors, flexible electronics, and many more are covered in detail to provide a full spectrum of their advanced applications. This book offers fresh aspects of nanomagnetic materials and innovative directions to scientists, researchers, and students. It will be of particular interest to materials scientists, engineers, physicists, chemists, and researchers in electronic and spintronic industries, and is suitable as a textbook for undergraduate and graduate studies.
Designed for microwave and RF engineers, this is a presentation of nonlinear microwave and RF circuits. It offers an understanding of the theory of nonlinear circuit analysis that they need for their work in the field. There is guidance on designing nonlinear circuits and modelling solid-state devices for nonlinear circuit analysis by computer, showing how characteristics of such models affect the analysis of these circuits. This second edition features new material, including critical discussions on nonlinear analysis of oscillators and design issues relating to RF (radio frequency) and wireless technology. More than 120 illustrations support key topics throughout the text.
Continuing advancements in electronics creates the possibility of communicating with more people at greater distances. Such an evolution calls for more efficient techniques and designs in radio communications. Emerging Innovations in Microwave and Antenna Engineering provides innovative insights into theoretical studies on propagation and microwave design of passive and active devices. The content within this publication is separated into three sections: the design of antennas, the design of the antennas for the RFID system, and the design of a new structure of microwave amplifier. Highlighting topics including additive manufacturing technology, design application, and performance characteristics, it is designed for engineers, electricians, researchers, students, and professionals, and covers topics centered on modern antenna and microwave circuits design and theory.
This guide to the theory and practice of RF power amplifier (PA) design for modern communications systems aims to help readers tackle PA design with confidence and save time in determining the cause of malfunctioning hardware. The book explores a unified approach to the classification of higher amplifier modes based on overdrive considerations. The text contains a complete survey of RF PA efficiency enhancement and linearization techniques and aims to help the reader design suitable matching networks which provide correct fundamental harmonic terminations for conventional high efficiency PA modes. It also provides an understanding of the class D, E and F modes and their feasibility at microwave frequencies and uses envelope simulation techniques to analyze the effects of distortion in overdriven PAS. Finally, the text discusses the maintenance of high efficiency operation at low points in an amplitude modulated signal envelope including detailed coverage of the Doherty, Chireix and Kahn techniques, it explores the possibilities and limitations of linearization methods and analyzes PA stability and oscillation problems.
Written by the pioneer and foremost authority on the subject, this new book is both a comprehensive university textbook and professional/research reference on the finite-difference time-domain (FD-TD) computational solution method for Maxwell's equations. It presents in-depth discussions of: The revolutionary Berenger PML absorbing boundary condition; FD-TD modelling of nonlinear, dispersive, and gain optical materials used in lasers and optical microchips; unstructured FD-TD meshes for modelling of complex systems; 2.5-dimensional body-of-revolution FD-TD algorithms; Linear and nonlinear electronic circuit models, including a seamless tie-in to SPICE; Digital signal postprocessing of FD-TD data; FD-TD modelling of microlaser cavities; and FD-TD software development for the latest Intel and Cray massively parallel computers.
Microelectromechanical sytems (MEMS) applications in RF and microwave electronics are revolutionizing wireless communications. This text provides a comprehensive explanation of the fabrication and fundamental physics of MEMS and their applications in electronic communication systems. The book integrates circuit fabrication technology, device design-oriented materials, mechanical and microwave considerations, and RF/microwave electronics to give engineers and managers a clear understanding of the potential and limitations of MEMS in electronic communications.
The new edition will discuss recent advances in computer modeling, including how fields generated outside the body are distributed inside and how various frequencies may interact differently with natural biological or biochemical cycles. It covers the basic biological, medical, physical, and electrical engineering principles and experimental results concerning how electric and magnetic fields affect biological systems-both as potential hazards to health and as potential tools for medical treatment and scientific research. It also briefly includes material on the relationship between the science and the regulatory processes concerning human exposure to the fields.
Microwave photonics and information optics provide high bandwidth and precision along with ultrafast speed at a low cost. In order to reduce noise at the communication trans-receivers, scattering in the devices needs to be decreased, which can be achieved by replacing optoelectronic devices with photonic devices because in the latter only photons propagate electromagnetic waves. Contemporary Developments in High-Frequency Photonic Devices is a crucial research book that examines high-frequency photonics and their applications in communication engineering. Featuring coverage on a wide range of topics such as metamaterials, optoelectronic devices, and plasmonics, this book is excellent for students, researchers, engineers, and professionals. |
![]() ![]() You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,541
Discovery Miles 25 410
|