![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Mineralogy
Using the kind permission given to me by my co-author, this short preface will be written in my name. I want to devote this book to San Juan city in Argentina. It is not only due to the fact that the city was twice completely destroyed after the devastating ear- quakes in 1941 and 1977, but also because my stay there completely changed my life. Changes included changing my career from the field of space plasma physics to Earth sciences and geophysics, and changes in my personal life giving me h- piness and compliance in my present family. Going back to the subject of the book, it should be noted that the history of the question asked by the book is very complicated and intricate. Starting in the 1930s from the observation of seismogenic electric fields, the area of seismo-ionospheric coupling became an area of fighting and conflicts, hopes and frustrations. Spe- lation and misunderstanding on the interdisciplinary borders made this field for many years (even up to now) taboo for so-called "serious scientists." But due to the courageous efforts of several groups in Russia and the former USSR states such as Kazakhstan and Uzbekistan, Japan, later France and Taiwan, Greece and Italy the situation started to improve.
When an area of research is in fast growth, it often happens that no one single journal is to be found where most of the relevant publications are contained. Such is the case of the physics of intercalation compounds, a field which, by sitting at a corner point between materials science, solid state physics, and chemistry, finds its contributions largely scattered about in the literature. Given these circumstances it is of crucial interest to find a place where the most recent contributions and up-to-date referen ces can be found at once. For intercalated graphite and other similar com pounds this role has been played so far by proceedings of international con ferences, such as La Napoule (1977), Nijmegen (1979), Provincetown (1980), and Sendai (1980). The present book is an ideal continuation of this series, as it contains most of the invited and contributed papers of the Trieste International Con ference on the Physics of Intercalation Compounds, held in Trieste, Italy during the week 6-10 July 1981. The main emphasis is on intercalated graphite, though several interesting contributions deal with other materials, such as polyacetylene and transition metal compounds, or with general problems, such as two-dimensional melting. The book is divided into six sections-Structure and General Properties, Electronic Porperties, Stability and Phonons, Ordering and Phase Transitions, Magnetic Resonance, and Transport Properties-reflecting the main areas of interest, and also broadly the main discussion sessions of the Conference."
1 The content ofthis article is based on a German book version ) which appeared at the end of the year 1986. The author tried to incorporate - as far as possible - new important results published in the last year. But the literature in the field of "convection and inhomogeneities in crystal growth from the melt" has increased so much in the meantime that the reader and the collegues should make allowance for any incompleteness, also in the case that their important contributions have not been cited. This could for example hold for problems related to the Czochralski growth. But especially for this topic the reader may be refered to the forthcoming volume of this series, which contains special contributions on "Surface Tension Driven Flow in Crystal Growth Melts" by D. Schwabe and on "Convection in Czochralski Melts" by M. Mihelcic, W. Uelhoff, H. Wenzl and K. Wingerath. The preparation of this manuscript has been supported by several women whose help is gratefully acknowledged by the autor: Mrs. Gisela Neuner for the type writing, Mrs. Abigail Sanders, Mrs. Fiona Eels and especially Prof. Nancy Haegel for their help in questions of the English language and Mrs. Christa Weber for reading corrections. Also the good cooperation with the Springer Verlag, especially Mrs. Bohlen and with the managing editor of Crystals, Prof. H. C. Freyhardt, who critically read the manuscript, is acknowledged.
Key biogeochemical events in the ocean take place in less than a second, are studied in experiments lasting a few hours, and determine cycles that last over seasons or even years. Models of the controlling processes thus have to take into account these time scales. This book aims at achieving consensus among these controlling processes at all relevant time scales. It helps understand the global carbon cycle including the production and breakdown of solved organic matter and the production, sinking and breakdown of particles. The emphasis on considering all time scales in submodel formulation is new and of interest to all those working in global ocean models and related fields.
" ... he who repeats a thing in the name of him who said it brings deliverance to the world ... " Mishnah, Sayings of the Fathers 6; 6 Main Objectives The present book intends to fulfill a number of purposes, which are arranged under the following scheme: 1. A topical review of main subjects in fractography, that branch of science which analyses fracture surface morphology and related features and their causes and mechanisms in technological materials. Among the materials that bear significant affinities to rock are in organic glass, ceramics, metals and polymer glass. 2. A historical review of the main studies published to date on rock fractography. In both these fields of review, one is confronted by the similarities between small-scale (micro metre) and large-scale (tens of metres) fracture surface morphologies. The similarities, on the one hand, and the differences on the other must surely promote further development of fractographical approaches in structural geology, where extrapola tion from microfractography to large-scale fractography is virtually a directive. As geologists become more familiar with the fractography of rocks, they undoubtedly will become aware of the great power of this descriptive discipline as a tool, in both qualitative and quantitative analysis. Rock fractography must yet be routinely applied in the structural analysis of rock formations in which fracture morphology is sufficiently prominent or extensive."
Water is the most effective agent in the climate system to modulate energy transfer by radiative processes, through its exchanges of latent heat and within cascades of chemical processes. It is the source of all life on earth, and once convective clouds are formed, it enables large vertical transports of momentum, heat and various atmospheric constituents up to levels above the tropical tropopause. Water triggers very complex processes at the earth's continental surfaces and within the oceans. At last, water in its gaseous phase is the most important greenhouse-gas! Numerical modelling and measurements of the state of the present climate system needs a very thorough understanding of all these processes and their various interactions and forcings. This is a prerequisite for more substantial forecasts of future states in all scales of time, from days to centuries. Therefore, the management of the World Climate Research Programme established in 1988 the new programme GEWEX (Global Energy and Water Cycle Experiment). GEWEX is specifically defined to determine the energy and water transports in the fast components of the climate system with the presently available modelling and measurement means and to provide new capabilities for the future. Research in GEWEX must further develop methods to determine the influence of climatic anomalies on available water resources.
The idea for a book on anorthosites came to me in January of 1986 while returning to Houston after holiday festivities in Dallas. The original idea was a review paper on anorthosites, but by the time I reached Houston, the subject material I contemplated induding was obviously too extensive for a single paper. The Director of the Lunar and Planetary Institute, Kevin Burke, was receptive to the idea of a book, and suggested that I contact Peter Wyllie, who serves as Editor of the Springer-Verlag series Minerals and Rocks. This effort, which I originally expected would take about a year, has taken nearly 6. I have many excuses- indolence, moving to another continent, other commitments, etc.-but the basic truth is that writing a book is much larger an undertaking than can be anticipated. Many people are aware of this, and I was duly forewarned. . But why write a book on anorthosites? This is a very good question, which I have considered from many angles. One rationale can be expressed in terms of a comparison between anorthosite and basalt. A first-order understanding of basalt genesis has been extant for many years. By contrast, there is little agreement about the origin of anorthosite. There are good reasons for studying and writing about basalt: it is the most abundant rock type on the Earth's surface, and is also plentiful on the surfaces of the other terrestrial planets.
The contributions in this book were presented, orally or as posters, at the International Volcanological Congress held in New Zealand from 1 to 9 February 1986, the centenary year of the Tarawera eruption of 10 June 1886. More than 500 people, from 29 countries, attend ed the Congress. Most of these works formed part of Symposium 4, "Volcanic Hazards - Prediction and Assess ment," convened by J.H. Latter, R.R. Dibble, D.A. Swanson and C.G. Newhall. The collection represents over half of the published abstracts of Symposium 4, together with three papers given at the Symposium, which lacked abstracts, and two which were part of Symposium 1 on pyroclastic flow deposits. The contribu tions cover a good proportion of the volcanically active parts of the world, with Italy, Japan, the West Indies and the USA especially well represented. Mount Erebus, Vulcano and Rabaul are individual volcanoes which have been treated in particular detail. Unfor tunately, there are no chapters in the book dealing with Africa, the Atlantic islands (except Iceland), Hawaii, Central America (except Mexico), or South America (in spite of the major disaster at Nevado del Ruiz Volcano in 1985)."
will probably be clarified by the continued cooperative efforts of scientists such as those in the group that met in Berlin last September. The staff of Dahlem Konferenzen is responsible for making the meeting of this group memorably pleasant and pleasantly mem- orable. Dr. Bernhard's gifts of charm, organizational skill, and administrative toughness assured that the conference was run elegantly, smoothly, and decisively, even down to the choice of editors for this volume. Marie Cervantes-Waldmann performed minor miracles extracting manuscripts gently but persistently from the authors and in turning the typescripts into a book. The other staff members of Dahlem Konferenzen were unfailingly helpful even under trying circumstances. They will be well rememberedbyall who were fortunate enough to be asked to Berlin for the first week in September, 1980. Mineral Deposits and the Evolution of the Biosphere, eds. H. D. Holland and M. Schidlowski, pp. 5-30. Dahlem Konferenzen, 1982. Berl in, Heidelberg, New York: Springer-Verlag. Microbial Processes in the Sulfur Cycle Through Time H. G. TrUper Institut f. Microbiologie, Rheinische Friedrich-Wilhelms-Universitat, 5300 Bonn 1, F. R. Germany Abstract. Two microbial processes are involved in the sulfur cycle of the earth's biosphere: anoxic dissimilatory sulfur oxidation by phototrophic bacteria and dissimilatory sulfate reduction by sulfate-reducing bacteria. In the presence of oxygen at chemoclines and redoxclines dissimilatory sulfur oxidation by chemolithotrophic bacteria (Thiobacillus, Beg- giatoa, and others) occurs. In addition, dissimilatory sulfur reducing bacteria participate in the sulfur cycle.
The first edition of this book was published in 1965 and its French translation in 1966. The revised second edition followed in 1967 and its Russian translation became available in 1969. Since then, many new petrographic observations and experimental data elucidat- ing reactions in metamorphic rocks have made a new approach in the study of metamorphic transformation desirable and possible. It is felt that this new approach, attempted in this book, leads to a better unders- tanding of rock metamorphism. The concept of metamorphic facies and subfacies considers asso- ciations of mineral assemblages from diverse bulk compositions as characteristic of a certain pressure-temperature range. As new petrographic observations accumulated, it became increasingly difficult to accommodate this information within a manageable framework of metamorphic facies and subfacies. Instead, it turned out that mineral assemblages due to reactions in common rocks of a particular composi- tion provide suitable indicators of metamorphic conditions. Metamorphic zones, defined on the basis of mineral reactions, very effectively display the evolution of metamorphic rocks. Thus the im- portance of reactions in metamorphic rocks is emphasized. Experimen- tal calibration of mineral reactions makes it possible to distinguish reac- tions which are of petrogenetic significance from those which are not. This distinction provides guidance in petrographic investigations un- dertaken with the object of deducing the physical conditions of metamorphism.
The African continent is unique in that it has escaped widespread orogenic activity after the Pan African orogenic event. Therefore, the African Plate provides the world's best example of the relationship between extensional magmatism and structural setting. This first complete and up-to-date review, written by leading scientists, discusses the evolutionary model and offers a new and reliable basis for scientists working on plate tectonics and extensional areas in other continents.
The papers in this volume are dedicated to Professor Dr. Dr. h.c. G. Christian Amstutz by his colleagues, friends, and students on the occasion of his 60th anniversary. The authors of this book - the theme was restricted to syngenesis and epigenesis in the formation of mineral deposits - wish to honour with their articles a scientist who has contributed to, and substantially promoted the understanding of the genesis of mineral deposits in the last decades. The majority of the articles deal with strata-bound depos its, thus reflecting one of his main scientific interests. In the tradition of his professors, Paul Niggli and Paul Ramdohr, G.C. Amstutz has maintained an open and active interest in many fields of earth science. His numerous papers have triggered a remarkable number of new ideas and investigations in a variety of fields, and the "happy marriage" of economic geology with sedimentology is cer tainly one of his main successes, starting with the first Symposium on Sedimentology and Ore Genesis at the Sixth International Sedimentological Congress at Delft in 1963."
During the last five years transmission electron microscopy (TEM) has added numerous important new data to mineralogy and has considerably changed its outlook. This is partly due to the fact that metallurgists and crystal physicists having solved most of the structural and crystallographic problems in metals have begun to show a widening interest in the much more complicated structures of minerals, and partly to recent progress in experimental techniques, mainly the availability of ion-thinning devices. While electron microscopists have become increasingly interested in minerals (judging from special symposia at recent meetings such as Fifth European Congress on Electron microscopy, Man chester 1972; Eight International Congress on Electron Microscopy, Canberra 1974) mineralogists have realized advantages of the new technique and applied it with increasing frequency. In an effort to coordinate the growing quantity of research, electron microscopy sessions have been included in meetings of mineralogists (e. g. Geological Society of America, Minneapolis, 1972, American Crystallographic Association, Berkeley, 1974). The tremendous response for the TEM symposium which H. -R. Wenk and G. Thomas organized at the Berkeley Conference of the American Crystallographic Association formed the basis for this book. It appeared useful at this stage to summarize the achievements of electron microscopy, scattered in many different journals in several different fields and present them to mineralogists. A group of participants as the Berkeley symposium formed an Editorial Committee and outlined the content of this book."
As a self-study guide, course primer or teaching aid, Borchardt-Ott's Crystallography is the perfect textbook for students and teachers alike. In fact, it can be used by crystallographers, chemists, mineralogists, geologists and physicists. Based on the author's more than 25 years of teaching experience, the book has numerous line drawings designed especially for the text and a large number of exercises - with solutions - at the end of each chapter. This 3rd edition is the translation of the seventh German edition with new chapters focused on crystal chemistry and x-ray diffraction methods.
The role played by earth sciences in the scientific community has changed considerably during this century. Since the revolutionary discoveries of global processes such as plate tectonics, there has been an increasing awareness of just how fundamental many of the mechanisms which dominate in these processes depend on the physical properties of the materials of which the earth is made. One of the prime objectives of mineral sciences is now to understand and predict these properties in a truly quantitative manner. The macroscopic properties which are of most immediate interest in this context fall within the conventional definitions of thermodynamics, magnetism, elasticity, dielectric susceptibilities, conductivity etc. These properties reflect the microscopic contributions, at an atomistic level, of harmonic and anharmonic lattice vibrations, ionic and electronic transport as well as a great variety of ordering and clustering phenomena. The advances made by solid state physicists and chemists in defining the underlying phenomena lnvolved in the thermal evolution of materials have stimulated major new research initiatives within the Earth Sciences. Earth Scientists have combined to form active groups within the wider community of solid state and materials scientists working towards a better understanding of those physical processes which govern not only the behaviour of simple model compounds but also that of complex materials like minerals. Concomitant with this change in direction has come an increasing awareness of the need to use the typical working tools of other disciplines.
Nowadays, major environmental issues are the object of large public debates de- spite the fact that scientific knowledge is often insufficient to draw unequivocal conclusions. Such is the case in the ongoing debate regarding the specific contri- butions of anthropogenic greenhouse gas emissions and of natural climate changes to global warming. At least 10 to 20 years of additional observations will be re- quired, before we will be able to conclude, with certainty, on this subject. In the mean time, and as directed by their immediate interests, people will continue to promote contradictory opinions. The media are, in part, responsible for perpetuat- ing such debates in that they convey indiscriminately the opinion of highly credi- ble scientists as that of dogmatic researchers, the latter, unfortunately too often expressing working hypotheses as established facts. Naturally, in a similarly mis- informed manner, pressure groups tend to support the researcher whose opinions most closely represent either their particular ideological battles or their economic interests and, hence, in their own way, add further to the confusion and obscurity of the debate. Only a few years ago, mercury (Hg)contamination in hydroelectric reservoirs was the object of such media and social biases. At the time, analytical data used to support the discourse were themselves uncertain and numerous hypotheses, often times fanciful, were proposed and hastily "delivered" to the public.
Clays and soils are of great importance in various scientific fields, such as agriculture and environmental science, and in mineral deposits. Students and close collaborators of Georges Millot, the eminent French clay sedimentologist, have put together a book with topics ranging from weathering processes and diagenetic evalution of sediments to sedimentary mineral deposits. The book is of interest to practitioners, advanced students as well as teachers in the above fields.
The main aim of this paper is to present some new and general results, ap plicable to the the equations of two phase flow, as formulated in geothermal reservoir engineering. Two phase regions are important in many geothermal reservoirs, especially at depths of order several hundred metres, where ris ing, essentially isothermal single phase liquid first begins to boil. The fluid then continues to rise, with its temperature and pressure closely following the saturation (boiling) curve appropriate to the fluid composition. Perhaps the two most interesting theoretical aspects of the (idealised) two phase flow equations in geothermal reservoir engineering are that firstly, only one component (water) is involved; and secondly, that the densities of the two phases are so different. This has led to the approximation of ignoring capillary pressure. The main aim of this paper is to analyse some of the consequences of this assumption, especially in relation to saturation changes within a uniform porous medium. A general analytic treatment of three dimensional flow is considered. Pre viously, three dimensional modelling in geothermal reservoirs have relied on numerical simulators. In contrast, most of the past analytic work has been restricted to one dimensional examples."
Granite petrology has achieved significant progress since Tuttle and Bowen (1958) wrote the monograph on the Origin of granite in the light of experimental studies in the system NaAISi308-KAISi308-SiOrH20. Since then, the compo nents CaAI Si 0, FeO, MgO, and excess alumina have 2 2 s been added to the pure system Ab-Or-Qz-H 0 in order to 2 include plagioclase and common mafic minerals in the inves tigations. In addition to synthetic systems, natural rocks have been used as starting materials, and other fluid compo or substituted for water. nents have been added to There are many new data concerning properties of melts and magmas, dehydration melting of synthetic and natural rocks, and phase relationships at H 0-undersaturated con 2 ditions. We found it useful and necessary to summarize the available information in this volume, and an effort has been made to present up-to-date data on various aspects of gran ite petrology. Most parts of the manuscript were reviewed by John Clemens, Peter Nabelek, and Alan White. Their friendly help and suggestions improved it considerably. Some chap ters of this volume benefited from critical review by William Brown, Bruno Scaillet, and Robert Linnen. Peter Wyllie pro vided us with reprints and many critical and useful sugges tions. Jagmohan Singh improved the English considerably."
This book represents the proceedings of the 9th written by a very active group of physicists at Kongsberg seminar, held at the Norwegian Mining the University of Oslo - physicists interested in Museum located in the city of Kongsberg about complex systems in general and geo-like systems 70 km Southwest of Oslo. The Kongsberg district in particular. is known for numerous Permian vein deposits of The content of the book is organized into three native silver, and mining activity in the area lasted major parts following the introductory chapter. for more than 300 years, finally ceasing in 1957. Chapters 2 to 7 primarily treat the role of fluids The previous eight Kongsberg seminars were in specific geological environments, ranging from focused on ore-forming processes and all of these sedimentary basins (Chapters 2-3) to contact were organized by Professor Arne Bj0rlykke, now metamorphic/hydrothermal scenarios (Chapters director of the Norwegian Geological Survey. 4-5) and regional metamorphic settings (Chapters Since process-orientated research tends to break 6-7). The following four chapters (8-11) focus down the traditional barriers between the different on various properties of fluid-rock systems that geological disciplines, this seminar has always are critical in controlling flow and transport been a meeting point for people with a variety through rocks. These include: mineral solubility of geological backgrounds.
Physical Chemistry of Magmas investigates the properties, structure, and phase relationships of silicate melts with invited contributions from an international team of experts. Data and some rules for estimating the properties and structures of melts, as well as the implications of the physical chemistry of silicate liquids to igneous petrology are presented. The second section then focuses on phase relationships, with particular attention on the application of experimental and theoretical petrology to modeling the origin of certain magmas.
Many geologists have an equivocal attitude to fluid movements within the crust and the associated changes in the chemical and physical properties of crustal rocks. The controversies earlier this centuary between the "soaks" and the "pontiffs" memorably summarised by H. H. Read (1957) in The Granite Controversy have largely been resolved. Few would now advocate the formation of large granitic bodies by in situ transformation of pre-existing crust as the result of the passage of ichors without the formation of a granitic melt. To many geochemists fluid transport and metasomatism have become slightly suspect processes which at the most locally disturb the primary geochemical and isotopic signatures. While there is common agreement that there are marked differences in the composition of the lower and upper crust, the role of fluid movement as one of the controls of this differentiation is often neglected in favour of suggested primary differences in the composition of igneous rocks emplaced at different depths. Selective fluid transport however provides many geologists with their livelyhood. Without the secondary concentration of commercially important elements by fluids within the crust the mining industry, geological science and human activities based on their products would be very different.
In recent years, there has been increasing interest from geoscientists in potassic ig- neous rocks. Academic geoscientists have been interested in their petrogenesis and their potential value in defining the tectonic setting of the terranes into which they were intruded, and exploration geoscientists have become increasingly interested in the association of these rocks with major epithermal gold and porphyry gold-copper deposits. Despite this current interest, there is no comprehensive textbook that deals with these aspects of potassic igneous rocks. This book redresses this situation by elucidating the characteristic features of po- tassic (high-K) igneous rocks, erecting a hierarchical scheme that alIows interpreta- tion of their tectonic setting using whole-rock geochemistry, and investigating their associations with a variety of gold and copper-gold deposits, worldwide. About half of the book is based on a PhD thesis by Dr Daniel MillIer which was produced at the Centre for Strategic Mineral Deposits (former ARC Key Centre) within the Depart- ment of Geology and Geophysics at The University of Western Australia under the supervision of Professor David Groves, the late Dr Nick Rock, Professor Eugen Stumpf}, Dr Wayne Taylor, and Dr Brendan Griffin. The remainder of the book was compiled from the literature using the collective experience of the two authors. The book is dedicated to the memory of Dr Rock who initiated the research project but died before its completion.
Crystal structure analysis from powder diffraction data has attracted considerable and ever growing interest in the last decades. X-ray powder diffraction is best known for phase analysis (Hanawalt files) dating back to the 30s. In the late 60s the inherent potential of powder diffraction for crystallographic problems was realized and scientists developed methods for using powder diffraction data at first only for the refinement of crystal structures. With the development of ever growing computer power profile fitting and pattern decomposition allowed to extract individual intensities from overlapping diffraction peaks opening the way to many other applications, especially to ab initio structure determination. Powder diffraction today is used in X-ray and neutron diffraction, where it is a powerful method in neutron diffraction for the determination of magnetic structures. In the last decade the interest has dramatically improved. There is hardly any field of crystallography where the Rietveld, or full pattern method has not been tried with quantitative phase analysis the most important recent application.
This monograph examines the mineralogy of illite, the most common clay mineral, as a unifying theme for understanding problems of the surface environment and environmental change. The volume begins with a careful analysis of the structure and transformation of illite. Using illite as the frame, the authors describe problems in soil chemistry, clay stability and clay kinetics in sedimentary rocks. |
You may like...
Lied Vir Sarah - Lesse Van My Ma
Jonathan Jansen, Naomi Jansen
Hardcover
(1)
iOS 7 Development Recipes…
Hans-Eric Gr Nlund, Joseph Hoffman, …
Paperback
R1,365
Discovery Miles 13 650
|