![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Mineralogy
This second edition is fully updated to include new developments in the study of metamorphism as well as enhanced features to facilitate course teaching. It integrates a systematic account of the mineralogical changes accompanying metamorphism of the major rock types with discussion of the conditions and settings in which they formed. The use of textures to understand metamorphic history and links to rock deformation are also explored. Specific chapters are devoted to rates and timescales of metamorphism and to the tectonic settings in which metamorphic belts develop. These provide a strong connection to other parts of the geology curriculum. Key thermodynamic and chemical concepts are introduced through examples which demonstrate their application and relevance. Richly illustrated in colour and featuring end-of-chapter and online exercises, this textbook is a comprehensive introduction to metamorphic rocks and processes for undergraduate students of petrology, and provides a solid basis for advanced study and research.
Building upon the award-winning second edition, this comprehensive textbook provides a fundamental understanding of the formative processes of igneous and metamorphic rocks. Encouraging a deeper comprehension of the subject by explaining the petrologic principles, and assuming knowledge of only introductory college-level courses in physics, chemistry, and calculus, it lucidly outlines mathematical derivations fully and at an elementary level, making this the ideal resource for intermediate and advanced courses in igneous and metamorphic petrology. With over 500 illustrations, many in color, this revised edition contains valuable new material and strengthened pedagogy, including boxed mathematical derivations allowing for a more accessible explanation of concepts, and more qualitative end-of-chapter questions to encourage discussion. With a new introductory chapter outlining the "bigger picture," this fully updated resource will guide students to an even greater mastery of petrology.
During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to reveal the intimate structure of samples with high accuracy but on much smaller samples than have ever been investigated by X-ray diffraction. As a tribute to these tremendous recent achievements, this NATO Advanced Study Institute was devoted to the novel approaches of electron crystallography for structure determination of nanosized materials.
Magnesium is one of the most abundant minerals in seawater. Extracting magnesium from seawater could reduce cost of this mineral, resulting in positive implications for industries that use it. This book addresses mineral process engineering with emphasis on magnesium and provides practicing engineers and students with comprehensive knowledge on magnesium and how it is extracted from seawater and magnesium ores. It takes a chemical engineering approach as separation of magnesium from seawater involves the application of the powerful science of chemistry and transport phenomena principles. This monograph discusses magnesium resources and occurrence, includes an exploration study on deriving magnesium and mineral salts from seawater, and features coverage of magnesium chloride. It also covers commercial methods for magnesium production as an end product, current and prospective applications in the energy domain, and offers an account of the use of magnesium to store hydrogen in the form of magnesium hydride.
1. PURPOSE OF PRESENT BOOK During the period May 19-26, 2003 the NATO Advanced Research Workshop (ARW) "Mud volcanism, Geodynamics and Seismicity" was held in Baku. Participants coming from USA, Germany, France, Italy, Portugal, Russian Federation, Ukraine, Romania, Georgia, UK, Israel, Azerbaijan, Tunisia have discussed about different geodynamic features of mud volcanism and participated to field trips oriented to a better knowledge of mud volcanic features. The Meeting focused on many features of mud volcanism occurrence and related geodynamic topics. The purpose of present book is to collect contributions discussed during the Meeting and to fill a marked editorial gap on mud volcanism. Mud volcanism was to date described by local monographies or by articles published by scientific journals. In particular no books were published on topics able to highlight the link among mud volcanism, geodynamics and seismicity. Mud volcano of Nirano (Northern Italy). Engraving from Stoppani A. (1871), Corso di Geologia, Milan, Bernardoni G. and Brigola G. Publishers. 2. WHY MUD VOLCANOES ARE GEOLOGICALLY IMPORTANT ? Mud volcanoes have attracted the attention of earth scientists for many years. Due to their importance in hydrocarbon research, a consistent progress in the knowledge of mud volcanism took place in the past twenty years. Mud extrusion is a well-known phenomenon occurring in geological environments where fluid-rich, fine grained sediments ascend within a lithologic succession due to their buoyancy.
This book provides a very basic introduction to electron microscopy and energy dispersive spectrometry (EDS). It has the largest compiled collection of EDS spectra ever published and covers most common rock forming minerals. In addition, it provides a key to help the novice wade through the large number of spectra.
Through an exploration of the links between geologic setting,
mining and process technologies, economics, environment and
stakeholder communities, this text addresses ways in which the
mineral industry can be made safe, efficient and ecologically
sustainable, focusing in particular upon the following key themes:
This book is mainly about the field geology of granites at all scales from that of a single outcrop to plutons and batholiths. All field geologists work initially at the scale of the outcrop, consequently most of the phenomena treated herein are those which are visible at outcrop scale. However, granites typically occur as plutons and batholiths, some of which are so large as to apparently defy any effort at systematic treatment. Having had the opportunity of mapping two very large and very different batholiths, namely the Coastal Batholith of Peru and the tin granites of Southeast Asia, I have found that it is possible to map large batholiths within a relatively short time, so that the geology of the batholith as a whole can be appreciated. Moreover batholiths are one of the most common modes of granite occurrence, so it makes sense to study them at their natural scale. During my working life I have worked with many geologists from underdevel oped countries and this book is mainly to help them in unravelling the geology of their native batholiths. I have been lucky with my friends and colleagues of many nationalities, and I particularly thank Wallace Pitcher, who took me on as an untried apprentice in Peru, and who, by his kindness and example, showed me how to look at granites properly.
Microbes are of key importance in the production, deposition and diagenesis of sediments. This volume provides a comprehensive overview of microbial sediments. It contains authoritative and stimulating contributions by distinguished authors that cover the field and set the scene for future advances. It deals with mats and biofilms, biosedimentary precipitates, fabrics and diagenesis in a wide range of sedimentary environments, and it examines the development of microbial sediments through time. It is designed for postgraduate researchers and professional scientists who require up-to-date information on the influence of microorganisms on sedimentation.
Mineralogical-sedimentological and geochemical investigations in combination with pollen data of a 12.7-m-long dated sediment core from Lake Silvana, SE Brazil, permit the reconstruction of the climatic history over the past 10,000 years. The lowermost section (I) reflects a coarse paleosol-type sediment with abundant plant debris and rootlets; pollen indicates grassland vegetation. Section II represents fine-grained lake sediments; pollen indicates a savanna-like vegetation. Section III represents a pollen-free, coarse-grained allogenic sediment deposited under high transportation energy (increased precipitation). Section IV, a greenish sequence with increasing C content towards the top, has a pollen spectrum of present-day vegetation (semideciduous forest). The different sediment sections show a connection with erosional phases in the catchment of the lake, based on mineralogy and geochemistry, which are a response to climate development.
This book focuses on the experimental determination of the physical properties of silicate melts and magmas close to glass transition. Abundant new data are presented. The same type of measurement is performed on a range of melts to test the effect of composition on physical properties; and a range of different techniques are used to determine the same physical properties to illustrate the relationships between the relaxation of the melt structure and the relaxation of its physical properties. This book is of interest to experimental researchers in the discussion of data obtained from both a materials science and a geoscientific point of view.
Entdecken Sie ein Wunder der Natur eigentlich altbekannt und doch immer noch voller Ratsel. Wissenschaftler aus den verschiedensten Fachbereichen fuhren Sie auf eine faszinierende Zeitreise durch die Wissenschaftsgeschichte. Am Beispiel des Naturwunders "Diamant" wird der Fortschritt der menschlichen Erkenntnis uber die Jahrhunderte hinweg eindrucksvoll deutlich - von den legendenumwobenen Anfangen und nebulosen Vorstellungen bis hin zur modernen wissenschaftlichen Analytik."
30% discount for members of The Mineralogical Society of Britain and Ireland Rare Earth Minerals presents a current overview of this geologically and industrially important group of minerals. It presents a wide variety of formats, crystal structures, petrographic descriptions, analytical data and numerous illustrations from outcrop photos to SEM pictures and crystallographic models.
30% discount for members of The Mineralogical Society of Britain and Ireland This text summarises the state-of-the-art in the study of mineral surfaces and some of the key applications of surface science in mineralogy and mineral chemistry. Each chapter covers a particular aspect of the subject and is written by an expert who raises the key issues involved for those requiring an introduction to the subject, whilst highlighting most recent developments. Advanced undergraduates, postgraduates and researchers alike will find this essential reading as it is the first book to review the fast developing field of mineral surfaces.
This text describes the theory and practice of optical mineralogy in terms useful to all practitioners from the beginning student to the professional in field and laboratory geology and industrial and environmental mineralogy. The author's aim is to provide the simplest possible access to the most powerful techniques of optical crystal identification. The book emphasizes useful practical theoretical material and methods for studying both thin sections of rocks and immersion of mineral grains in refractive index liquids. It contains original research results found in no other text. A major goal of the text is to allow precise determination of refractive index and the essential composition of crystals belonging to important mineral groups such as olivine, feldspar, and pyroxene. New methods for achieving this are developed for both white light and colored light of variable wavelength. Among the book's unique features is the color fringe chart developed by Prof. Morse for estimating both the direction and degree of mismatch between the refraction index of a crystal and that of the surrounding liquid medium in the immersion method. Further, a new algebraic treatment of the dispersion method allows a high precision of match between crystal and liquid. An original classification of interference figures aids crystal identification. Worked examples of refractive index determination and crystal identification are given for each optical class of crystals. The optic orientation of optically biaxial crystals is illustrated with examples from each crystal system portrayed in stereographic projection. Principles and applications of crystal identification with the dispersion method are developed in aseparate chapter. The final chapter is a practical, step-by-step guide to crystal identification in thin section or immersion. An identification table for the most common asbestos minerals, including the dispersion staining method used by most environmental laboratories.
With an approach that stresses the fundamental solid state behaviour of minerals, and with emphasis on both theory and experiment, this text surveys the physics and chemistry of earth materials. It starts with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how structural and thermodynamic information is obtained experimentally. The quantitative concepts of chemical bonding band theory, molecular orbit and ionic models are reviewed. The book goes on to discuss physical properties and to relate microscopic features to macroscopic thermodynamic behaviour. The book then discusses high pressure phase transitions, amorphous materials and solid state reactions, and concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book is designed to fill the gap between undergraduate texts and specialized review volumes, for students in earth sciences and materials science.
Introduction to Clay Minerals is designed to give a detailed, concise and clear introduction to clay mineralogy. Using the information presented here, one should be able to understand clays and their mineralogy, their uses and importance in modern life.
The object of this book is to explain how to create a synthesis of complex biostratigraphic data, and how to extract from such a syn thesis a relative time scale based exclusively on the fossil content of sedimentary rocks. Such a time scale can be used to attribute relative ages to isolated fossil-bearing samples. From a practical point of view, the method described in this book will particularly interest paleontologists and geologists who must construct zonations and establish correlations on the basis of bio stratigraphic data that are both plentiful and apparently contra dictory. It is well known that the difficulties involved in constructing bio chronologic scales are largely due to the discontinuous nature of the fossil record. We know that the relationships between the first ap pearances (or disappearances) of different fossil species are rarely constant in stratigraphic sections that are distant from each other. It if often extremely difficult to discover datums or sets of species that are useful in making significant biochronologic correlations on a large scale. The theoretical model explained here (known as the Unitary As sociation Method) provides clear solutions to most of these problems. That method is purely deterministic, as opposed to statistical and probabilistic analytical techniques producing "average" ranges. We demonstrate in Chapter 15 why most of these techniques produce results which are usually not compatible with the original biostrati graphic observations (i.e., the taxonomic contents of the studied sam ples are not reproduced in the outputs).
The application of thermal analysis is outlined by 18 contributions, writtenby experts in the various fields of geosciences. Emphasis was laid on the determination of minerals and technical products, kinetic parameters and calorific values in glass and ceramics technology, characterization of raw materials (e.g. clays, industrial minerals), in quality control and performance assessment, but also in environment protection from soil and water pollution, using re-evaluated existing and new data and improved combined modern methods. This book is addressed to practitioners, scientistsand students in mineralogy/crystallography, applied geology, material sciences, and environmental sciences.
This work is based on the observation that further major advances in geochemistry, particularly in understanding the rules that govern the ways in which elements come together to form minerals and rocks, will require the application of the theories of quantum mechanics. The book therefore outlines this theoretical background and discusses the models used to describe bonding in geochemical systems. It is the first book to describe and critically review the application of quantum mechanical theories to minerals and geochemical systems. The book consolidates valuable findings from chemistry and materials science as well as mineralogy and geochemistry, and the presentation has relevance to professionals in a wide range of disciplines. Experimental techniques are surveyed, but the emphasis is on applying theoretical tools to various groups of minerals: the oxides, silicates, carbonates, borates, and sulfides. Other topics dealt with in depth include structure, stereochemistry, bond strengths and stabilities of minerals, various physical properties, and the overall geochemical distribution of the elements.
Thermodynamic treatment of mineral equilibria, a topic central to mineralogical thermodynamics, can be traced back to the tum of the century, when J. H. Van't Hoff and his associates pioneered in applying thermodynamics to the mineral assemblages observed in the Stassfurt salt deposit. Although other renowned researchers joined forces to develop the subject - H. E. Boeke even tried to popularize it by giving an overview of the early developments in his "Grundlagen der physikalisch-chemischen Petrographie," Berlin, 1915 - it remained, on the whole, an esoteric subject for the majority of the contemporary geological community. Seen that way, mineralogical thermodynamics came of age during the last four decades, and evolved very rapidly into a mainstream discipline of geochemistry. It has contributed enormously to our understanding of the phase equilibria of mineral systems, and has helped put mineralogy and petrology on a firm quantitative basis. In the wake of these developments, academic curricula now require the students of geology to take a course in basic thermodynamics, traditionally offered by the departments of chemistry. Building on that foundation, a supplementary course is generally offered to familiarize the students with diverse mineralogical applications of thermo dynamics. This book draws from the author's experience in giving such a course, and has been tailored to cater to those who have had a previous exposure to the basic concepts of chemical thermodynamics."
For future studies of oceanic circulation it is necessary to develop the tritium measurement via 3He ingrowth into a routine procedure with a high capacity for efficient use. This paper attempts to demonstrate that this can be achieved using a commercial helium isotope mass spectrometer and special procedures for sample preparation, storage for 3He ingrowth, and 3He transfer from the ingrowth containers into the mass spectrometer. This method allows for measurement with a much higher precision and lower detection limit than is possible with counting techniques. Additionally, the parameters and blanks in routine operation of the system are discussed.
Rutley's elements of mineralogy has been around for a long time, certainly throughout my own lifetime; and if my great grandfather had read geology, it would have been prescribed reading for him too It has been rewritten and revised frequently since fir t conceived by Frank Rutley in the late 19th century. Major revisions occurred in 1902, and then in 1914, when H. H. Read first took over the authorship, and thereafter in 1936 and in 1965 when the last major changes occurred. It was with some trepidation that I agreed to attempt this revision. I had been asked to do it by Janet Watson in 1979, but various commitments delayed my start on it until 1984. This 27th edition encompasses a number of changes. Chapters 1-5 have the same headings as before, but considerable changes have been made in all of them, particularly 1, 3, 4 and 5. Comments sought prior to the revision revealed considerable disagreement about the role of blowpipe analyses in the book. I have only once had blowpipe analyses demon strated to me, and have never used them; but there is no doubt that they are employed in many countries, and many of the tests (flame colour, bead, etc. ) are still useful as rapid indicators of which element is present in a mineral. I have therefore kept blowpipe analysis information in Rutley, but have relegated it to an appendix."
The past decade has seen remarkable growth in research related to petroleum reseIVoir simulation. This growth reflects several developments, not the least of which is the increased interest in oil recovery technologies requiring sophisticated engineer ing. Augmenting this interest has been the broader availability of supercomputers capable of handling the tremendous computational demands of a typical reseIVoir simulator. The field of reseIVoir simulation incorporates several major facets of applied mathematics. First, in view of the varieyt and complexity of the processes encoun tered, it is imperative that the modeler adopt a systematic approach to establishing the equations governing reseIVoir flows. Second, the mathematical structure of these flow equations needs to be carefully analyzed in order to develop appropriate and efficient numerical methods for their solution. Third, since some aspects of the discretized flow equations are typically stiff, one must develop efficient schemes for solving large sparse systems of linear equations. This monograph has three parts, each devoted to one of these three aspects of reseIVoir modeling. The text grew out of a set of lectures presented by the authors in the autumn of 1986 at the IBM Scientific Center in Bergen, Norway. We feel that it is only appropriate to caution the reader that many of the ideas that we present in this monograph do not reflect standard approaches in petroleum reseIVoir simulation. In fact, our aim is to outline promising new ways of attacking reseIVoir simulation prob lems, rather than to compile another textbook for the mainstream." |
![]() ![]() You may like...
Disruption in the Infrastructure Sector…
Stefano Gatti, Carlo Chiarella
Hardcover
R1,288
Discovery Miles 12 880
Communicative Competence in a Second…
Matthew Kanwit, Megan Solon
Paperback
R1,286
Discovery Miles 12 860
Second Language Acquisition and Lifelong…
Simone E Pfenninger, Julia Festman, …
Paperback
R1,257
Discovery Miles 12 570
|