![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
The techniques that can be used to solve non-linear problems are far different than those that are used to solve linear problems. Many courses in analysis and applied mathematics attack linear cases simply because they are easier to solve and do not require a large theoretical background in order to approach them. Professor Schechter's 2005 book is devoted to non-linear methods using the least background material possible and the simplest linear techniques. An understanding of the tools for solving non-linear problems is developed whilst demonstrating their application to problems in one dimension and then leading to higher dimensions. The reader is guided using simple exposition and proof, assuming a minimal set of pre-requisites. For completion, a set of appendices covering essential basics in functional analysis and metric spaces is included, making this ideal as an accompanying text on an upper-undergraduate or graduate course, or even for self-study.
Das Buch stellt die grundlegenden Konzepte der Chaos-Theorie und die mathematischen Hilfsmittel so elementar wie moglich dar."
The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.
Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature 1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations.
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate students, as well as doctoral students, postdoctoral researchers and academic experts who are engaged in modeling stochastic processes on networks; Providing software that can solve differential equation models or directly simulate epidemics on networks. Replete with numerous diagrams, examples, instructive exercises, and online access to simulation algorithms and readily usable code, this book will appeal to a wide spectrum of readers from different backgrounds and academic levels. Appropriate for students with or without a strong background in mathematics, this textbook can form the basis of an advanced undergraduate or graduate course in both mathematics and other departments alike.
Mathematical Modeling for Epidemiology and Ecology provides readers with the mathematical tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas and the biological implications, with detailed explanations. The author assumes no mathematics background beyond elementary differential calculus. An introductory chapter on basic principles of mathematical modeling is followed by chapters on empirical modeling and mechanistic modeling. These chapters contain a thorough treatment of key ideas and techniques that are often neglected in mathematics books, such as the Akaike Information Criterion. The second half of the book focuses on analysis of dynamical systems, emphasizing tools to simplify analysis, such as the Routh-Hurwitz conditions and asymptotic analysis. Courses can be focused on either half of the book or thematically chosen material from both halves, such as a course on mathematical epidemiology. The biological content is self-contained and includes many topics in epidemiology and ecology. Some of this material appears in case studies that focus on a single detailed example, and some is based on recent research by the author on vaccination modeling and scenarios from the COVID-19 pandemic. The problem sets feature linked problems where one biological setting appears in multi-step problems that are sorted into the appropriate section, allowing readers to gradually develop complete investigations of topics such as HIV immunology and harvesting of natural resources. Some problems use programs written by the author for Matlab or Octave; these combine with more traditional mathematical exercises to give students a full set of tools for model analysis. Each chapter contains additional case studies in the form of projects with detailed directions. New appendices contain mathematical details on optimization, numerical solution of differential equations, scaling, linearization, and sophisticated use of elementary algebra to simplify problems.
Many exciting frontiers of science and engineering require understanding the spatiotemporal properties of sustained nonequilibrium systems such as fluids, plasmas, reacting and diffusing chemicals, crystals solidifying from a melt, heart muscle, and networks of excitable neurons in brains. This introductory textbook for graduate students in biology, chemistry, engineering, mathematics, and physics provides a systematic account of the basic science common to these diverse areas. This book provides a careful pedagogical motivation of key concepts, discusses why diverse nonequilibrium systems often show similar patterns and dynamics, and gives a balanced discussion of the role of experiments, simulation, and analytics. It contains numerous worked examples and over 150 exercises. This book will also interest scientists who want to learn about the experiments, simulations, and theory that explain how complex patterns form in sustained nonequilibrium systems.
The world around us, natural or man-made, is built and held together by solid materials. Understanding their behaviour is the task of solid mechanics, which is in turn applied to many areas, from earthquake mechanics to industry, construction to biomechanics. The variety of materials (metals, rocks, glasses, sand, flesh and bone) and their properties (porosity, viscosity, elasticity, plasticity) is reflected by the concepts and techniques needed to understand them: a rich mixture of mathematics, physics and experiment. These are all combined in this unique book, based on years of experience in research and teaching. Starting from the simplest situations, models of increasing sophistication are derived and applied. The emphasis is on problem-solving and building intuition, rather than a technical presentation of theory. The text is complemented by over 100 carefully-chosen exercises, making this an ideal companion for students taking advanced courses, or those undertaking research in this or related disciplines.
This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point. Inside, readers will find a detailed introduction into the theory of parabolic bifurcation, Fatou coordinates, Ecalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization. The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishing to explore one of the frontiers of modern complex dynamics.
Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling, permit an understanding of the global behavior of economic systems without first having to work out a detailed microscopic description of the system. This pioneering text explores the use of these concepts in the description of financial systems, the dynamic new specialty of econophysics. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully-developed turbulent fluids and apply them to financial time series. They also present a new stochastic model that displays several of the statistical properties observed in empirical data. Physicists will find the application of statistical physics concepts to economic systems fascinating. Economists and other financial professionals will benefit from the book's empirical analysis methods and well-formulated theoretical tools that will allow them to describe systems composed of a huge number of interacting subsystems.
This book offers a fundamental explanation of nonlinear oscillations in physical systems. Originally intended for electrical engineers, it remains an important reference for the increasing numbers of researchers studying nonlinear phenomena in physics, chemical engineering, biology, medicine, and other fields. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Les oscillations complexes mises en evidence dans les systemes physiologiques s'analysent par des modeles. Cet ouvrage se propose de presenter et de developper les mathematiques necessaires a leur comprehension. On presente en particulier les notions d'excitabilite, de bistabilite, de synchronisation et d'oscillations en salves dans le cadre de l'analyse qualitative."
Solitons are waves with exceptional stability properties which appear in many areas of physics. The basic properties of solitons are introduced here using examples from macroscopic physics (e.g. blood pressure pulses and fibre optical communications). The book then presents the main theoretical methods before discussing applications from solid state or atomic physics such as dislocations, excitations in spin chains, conducting polymers, ferroelectrics and Bose-Einstein condensates. Examples are also taken from biological physics and include energy transfer in proteins and DNA fluctuations. Throughout the book the authors emphasise a fresh approach to modelling nonlinearities in physics. Instead of a perturbative approach, nonlinearities are treated intrinsically and the analysis based on the soliton equations introduced in this book. Based on the authors' graduate course, this textbook gives an instructive view of the physics of solitons for students with a basic knowledge of general physics, and classical and quantum mechanics.
The book provides a general introduction to the theory of large deviations and a wide overview of the metastable behaviour of stochastic dynamics. With only minimal prerequisites, the book covers all the main results and brings the reader to the most recent developments. Particular emphasis is given to the fundamental Freidlin-Wentzell results on small random perturbations of dynamical systems. Metastability is first described on physical grounds, following which more rigorous approaches to its description are developed. Many relevant examples are considered from the point of view of the so-called pathwise approach. The first part of the book develops the relevant tools including the theory of large deviations which are then used to provide a physically relevant dynamical description of metastability. Written to be accessible to graduate students, this book provides an excellent route into contemporary research.
The techniques that can be used to solve non-linear problems are far different than those that are used to solve linear problems. Many courses in analysis and applied mathematics attack linear cases simply because they are easier to solve and do not require a large theoretical background in order to approach them. Professor Schechter's 2005 book is devoted to non-linear methods using the least background material possible and the simplest linear techniques. An understanding of the tools for solving non-linear problems is developed whilst demonstrating their application to problems in one dimension and then leading to higher dimensions. The reader is guided using simple exposition and proof, assuming a minimal set of pre-requisites. For completion, a set of appendices covering essential basics in functional analysis and metric spaces is included, making this ideal as an accompanying text on an upper-undergraduate or graduate course, or even for self-study.
The theory of dynamical systems has given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introductory text covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory. The only prerequisite is a basic undergraduate analysis course. The authors use a progression of examples to present the concepts and tools for describing asymptotic behavior in dynamical systems, gradually increasing the level of complexity. Subjects include contractions, logistic maps, equidistribution, symbolic dynamics, mechanics, hyperbolic dynamics, strange attractors, twist maps, and KAM-theory.
This book provides a broad introduction to the subject of dynamical systems, suitable for a one or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to areas such as number theory, data storage, and internet search engines.
This book presents a unified approach for obtaining the limiting distributions of minimum distance, M and R estimators corresponding to non-smooth underlying scores in a large class of dynamic non-linear models including ARCH models. It also discusses classes of goodness-of-t tests for fitting an error distribution in some of these models and/or fitting a regression-autoregressive function without assuming the knowledge of the error distribution. The main tool is the asymptotic equicontinuity of certain basic weighted residual empirical processes in the uniform and L2 metrics. The contents of this monograph should be useful to graduate students and research scholars in statistics, econometrics, and finance. This book is a an updated edition of the author's monograph Weighted Empirical Processes and Liner Models (IMS Lecture Notes-Monograph 21, 1992). The new edition differs from the previous one in many ways. To mention just a few: It includes asymptotically distribution free tests for fitting a regression and/or an autoregressive models; the asymptotic distributions of auto-regression quantiles and rank scores; and above all the weak convergence of the residual empirical processes useful in nonlinear ARCH models. Hira L. Koul is a professor of statistics at Michigan State University. He is a Fellow of the IMS and an Elected Member of the International Statistical Institute. He was awarded the prestigious Humboldt Research Award for Senior Researchers in 1995. He has been on the editorial boards of the Annals of Statistics, Sankhya, and J. Indian Statistical Association. Currently he is a Coordinating Editor of the Journal of Statistical Planning and Inference, and an Associate Editor of Statistics and Probability Letters.
This book is a text/monograph designed to provide an overview of optimal computational methods for the solution of nonlinear equations, fixed points of contractive and noncontractive mapping, and for the computation of the topological degree. The worst-case settings are analysed here. Several classes of functions are studied with special empahsis on tight complexity bounds and methods which are close to or achieve these bounds. Each chapter ends with exercises, including companies and open-ended research based exercises.
Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling, permit an understanding of the global behavior of economic systems without first having to work out a detailed microscopic description of the system. This pioneering text explores the use of these concepts in the description of financial systems, the dynamic new specialty of econophysics. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully-developed turbulent fluids and apply them to financial time series. They also present a new stochastic model that displays several of the statistical properties observed in empirical data. Physicists will find the application of statistical physics concepts to economic systems fascinating. Economists and other financial professionals will benefit from the book's empirical analysis methods and well-formulated theoretical tools that will allow them to describe systems composed of a huge number of interacting subsystems.
Complex behavior can occur in any system made up of large numbers of interacting constituents, be they atoms in a solid, cells in a living organism, or consumers in a national economy. Analysis of this behavior often involves making important assumptions and approximations, the exact nature of which vary from subject to subject. Foundations of Complex-system Theories begins with a description of the general features of complexity and then examines a range of important concepts, such as theories of composite systems, collective phenomena, emergent properties, and stochastic processes. Each topic is discussed with reference to the fields of statistical physics, evolutionary biology, and economics, thereby highlighting recurrent themes in the study of complex systems. This detailed yet nontechnical book will appeal to anyone who wants to know more about complex systems and their behavior. It will also be of great interest to specialists studying complexity in the physical, biological, and social sciences.
Un systeme dynamique discret est un ensemble fini d'elements, prenant chacun un nombre fini d'etats, et evoluant, dans un temps discret, par interactions mutuelles. Ce livre est consacre a l'analyse de la dynamique temporelle de tels systemes. Grace a des outils de metrique discrete, on etablit des resultats de convergence globale (contraction booleenne) convergence locale vers un point fixe ou vers un cycle, et ceci pour differents modes operatoires.
Das Buch wendet sich an Leser, die - uber die rein computergraphische Darstellung hinaus - an einer analytischen Untersuchung von chaotischen und nichtchaotischen Differenzen- und Differentialgleichungssystemen interessiert sind. Breiter Raum wird der Durchrechnung von Beispielen gegeben. Dargestellt werden zunachst qualitative Methoden als auch solche, die das Auffinden von Attraktoren, Bifurkationen etc. und deren Klassifikation in Abhangigkeit von den Systemparametern gestatten. Der letzte Teil schliesslich widmet sich der quantitativen Beschreibung chaotischer Systeme. Dazu werden zuerst die Begriffe Chaos und Fraktal exakt definiert und dann die verschiedenen fraktalen Dimensionen, Lyapunov-Exponenten, Entropien etc. eingefuhrt und durch Beispiele begrundet."
Dynamics Reported reports on recent developments in dynamical systems theory. Dynamical systems theory of course originated from ordinary differential equations. Today, dynamical systems theory covers a much larger area, including dynamical processes described by functional and integral equations, by partial and stochastic differential equations, etc. Dynamical systems theory has evolved remarkably rapidly in the recent years. A wealth of new phenomena, new ideas and new techniques proved to be of considerable interest to scientists in rather different fields. It is not surprising that thousands of publications on the theory itself and on its various applications have appeared and still will appear. Dynamics Reported presents carefully written articles on major subjects in dynamical systems and their applications, addressed not only to specialists but also to a broader range of readers. Topics are advanced while detailed exposition of ideas, restriction to typical results, rather than to the most general ones, and last but not least lucid proofs help to gain an utmost degree of clarity. It is hoped that Dynamics Reported will stimulate exchange of ideas among those working in dynamical systems and moreover will be useful for those entering the field. |
![]() ![]() You may like...
Object-Oriented Metamethods
B. Henderson-Sellers, A. Bulthuis
Hardcover
R1,615
Discovery Miles 16 150
Agile Scrum Implementation and Its…
Kenneth R Walsh, Sathiadev Mahesh, …
Hardcover
R6,500
Discovery Miles 65 000
Data Abstraction and Problem Solving…
Janet Prichard, Frank Carrano
Paperback
R2,421
Discovery Miles 24 210
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,047
Discovery Miles 30 470
Orthogonal Polynomials: Current Trends…
Francisco Marcellan, Edmundo J. Huertas
Hardcover
R4,391
Discovery Miles 43 910
Symplectic Difference Systems…
Ondrej Dosly, Julia Elyseeva, …
Hardcover
Applications Of C++ Programming…
Fritz Solms, Willi-Hans Steeb
Hardcover
R1,670
Discovery Miles 16 700
|