![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
This is an introduction to the dynamics of fluids at small scales, the physical and mathematical underpinnings of Brownian motion, and the application of these subjects to the dynamics and flow of complex fluids such as colloidal suspensions and polymer solutions. It brings together continuum mechanics, statistical mechanics, polymer and colloid science, and various branches of applied mathematics, in a self-contained and integrated treatment that provides a foundation for understanding complex fluids, with a strong emphasis on fluid dynamics. Students and researchers will find that this book is extensively cross-referenced to illustrate connections between different aspects of the field. Its focus on fundamental principles and theoretical approaches provides the necessary groundwork for research in the dynamics of flowing complex fluids.
Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field.
Dedicated to the Memory of Rufus Bowen (1947-1978)
This is a semi-popular mathematics book aimed at a broad readership of mathematically literate scientists, especially mathematicians and physicists who are not experts in classical mechanics or KAM theory, and scientific-minded readers. Parts of the book should also appeal to less mathematically trained readers with an interest in the history or philosophy of science.The scope of the book is broad: it not only describes KAM theory in some detail, but also presents its historical context (thus showing why it was a "breakthrough"). Also discussed are applications of KAM theory (especially to celestial mechanics and statistical mechanics) and the parts of mathematics and physics in which KAM theory resides (dynamical systems, classical mechanics, and Hamiltonian perturbation theory).Although a number of sources on KAM theory are now available for experts, this book attempts to fill a long-standing gap at a more descriptive level. It stands out very clearly from existing publications on KAM theory because it leads the reader through an accessible account of the theory and places it in its proper context in mathematics, physics, and the history of science.
This monograph presents the most recent progress in bifurcation theory of impulsive dynamical systems with time delays and other functional dependence. It covers not only smooth local bifurcations, but also some non-smooth bifurcation phenomena that are unique to impulsive dynamical systems. The monograph is split into four distinct parts, independently addressing both finite and infinite-dimensional dynamical systems before discussing their applications. The primary contributions are a rigorous nonautonomous dynamical systems framework and analysis of nonlinear systems, stability, and invariant manifold theory. Special attention is paid to the centre manifold and associated reduction principle, as these are essential to the local bifurcation theory. Specifying to periodic systems, the Floquet theory is extended to impulsive functional differential equations, and this permits an exploration of the impulsive analogues of saddle-node, transcritical, pitchfork and Hopf bifurcations. Readers will learn how techniques of classical bifurcation theory extend to impulsive functional differential equations and, as a special case, impulsive differential equations without delays. They will learn about stability for fixed points, periodic orbits and complete bounded trajectories, and how the linearization of the dynamical system allows for a suitable definition of hyperbolicity. They will see how to complete a centre manifold reduction and analyze a bifurcation at a nonhyperbolic steady state.
This book provides a broad introduction to the subject of dynamical systems, suitable for a one- or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to such areas as number theory, data storage, and Internet search engines. This book grew out of lecture notes from the graduate dynamical systems course at the University of Maryland, College Park, and reflects not only the tastes of the authors, but also to some extent the collective opinion of the Dynamics Group at the University of Maryland, which includes experts in virtually every major area of dynamical systems.
Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible branching of solutions as parameters vary), including the proof of Rabinowitz's global bifurcation theorem. Stability of the branches is also studied.The book concludes with a presentation of some generalized implicit function theorems of Nash-Moser type with applications to Kolmogorov-Arnold-Moser theory and to conjugacy problems. After more than 20 years, this book continues to be an excellent graduate level textbook and a useful supplementary course text.
Dynamical systems and the twin field ergodic theory have their roots in the qualitative theory of differential equations, developed by the great mathematician Henri Poincare, and in the kinetic theory of gases built in mathematical terms by physicists James Clerk Maxwell and Ludwig Boltzmann. Together, they aim to model, explain and predict the behavior of natural and artificial phenomena which evolve in time. For more than three decades, Marcelo Viana has been making several outstanding contributions to this area of mathematics. This volume contains a selection of his research papers, covering a wide range of topics: rigorous theory of strange attractors, physical measures, bifurcation theory, homoclinic phenomena, fractal dimensions, partial hyperbolicity, thermodynamic formalism, non-uniform hyperbolicity, interval exchange maps Teichmuller flows, and the modern theory of Lyapunov exponents. Marcelo Viana, a world leader in this field, has been the object of several academic distinctions, such as the inaugural Ramanujan prize of the International Centre for Theoretical Physics, and the Louis D. Scientific Grand Prix of the Institut de France. He is also recognized for his broad contribution to the mathematical community, in his country and region as well as in the international arena.
A unique and accessible book providing a unified framework for studying quantum and classical dynamical systems, both finite and infinite, conservative and dissipative. Many examples and references are included throughout, making it an ideal text for graduate students in physics and mathematics.
This book is comprised of the latest research into CSS methods, uses, and results, as presented at the 2020 annual conference of the Computational Social Science Society of the Americas (CSSSA). Computational social science (CSS) is the science that investigates social and behavioral dynamics through social simulation, social network analysis, and social media analysis. The CSSSA is a professional society that aims to advance the field of computational social science in all areas, including basic and applied orientations, by holding conferences and workshops, promoting standards of scientific excellence in research and teaching, and publishing research findings and results. The above-mentioned conference was held virtually, October 8 - 11, 2020. What follows is a diverse representation of new results and approaches to using the tools of CSS and agent-based modeling (ABM) in exploring complex phenomena across many different domains. Readers will therefore not only have the results of these specific projects upon which to build, along with a wealth of case-study examples that can serve as meaningful exemplars for new research projects and activities, they will also gain a greater appreciation for the broad scope of CSS.
This book is based on proceedings from a February 2004 Santa Fe Institute workshop. Its contributing chapter authors treat the ecology of predator-prey interactions and food web theory, structure, and dynamics, joining researchers who also work on complex systems and on large nonlinear networks, from the points of view of other sub-fields within ecology. Food webs play a central role in the debates on the role of complexity in stability, persistence, and resilience. Better empirical data and the exploding interest in the subject of networks across social, physical, and natural sciences prompted creation of this volume. The book explores the boundaries of what is known of the relationship between structure and dynamics in ecological networks, and defines directions for future developments in this field.
The Second-Order Adjoint Sensitivity Analysis Methodology generalizes the First-Order Theory presented in the author's previous books published by CRC Press. This breakthrough has many applications in sensitivity and uncertainty analysis, optimization, data assimilation, model calibration, and reducing uncertainties in model predictions. The book has many illustrative examples that will help readers understand the complexity of the subject and will enable them to apply this methodology to problems in their own fields. Highlights: * Covers a wide range of needs, from graduate students to advanced researchers * Provides a text positioned to be the primary reference for high-order sensitivity and uncertainty analysis * Applies to all fields involving numerical modeling, optimization, quantification of sensitivities in direct and inverse problems in the presence of uncertainties. About the Author: Dan Gabriel Cacuci is a South Carolina SmartState Endowed Chair Professor and the Director of the Center for Nuclear Science and Energy, Department of Mechanical Engineering at the University of South Carolina. He has a Ph.D. in Applied Physics, Mechanical and Nuclear Engineering from Columbia University. He is also the recipient of many awards including four honorary doctorates, the Ernest Orlando Lawrence Memorial award from the U.S. Dept. of Energy and the Arthur Holly Compton, Eugene P. Wigner and the Glenn Seaborg Awards from the American Nuclear Society.
The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, rational functions and meromorphic maps. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite type and Hoelder continuous summable potentials. This leads to a fairly full account of the structure of the corresponding open dynamical systems and their associated surviving sets.
Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians - with limited knowledge of nonlinear dynamics - to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic (please see www.marco.bittelli.com). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework - condensed from sound empirical practices recommended in the literature - that details a step-by-step procedure for applying NLTS in real-world data diagnostics.
This book contains all research papers published by the distinguished Brazilian mathematician Elon Lima. It includes the papers from his PhD thesis on homotopy theory, which are hard to find elsewhere. Elon Lima wrote more than 40 books in the field of topology and dynamical systems. He was a profound mathematician with a genuine vocation to teach and write mathematics.
This monograph, "Non-linear Cooperative Effects in Open Quantum Systems: Entanglement and Second Order Coherence" is dedicated to the large auditory of specialists interested in the modern approaches in quantum open systems, cooperative phenomena between excited atoms and the field of the non-linear interaction. Special attention is dedicated to the problems of non-linear interaction with vacuum fields and thermostat with finite temperature, but quantum aspects of laser generation of light in non-linear interaction with finite numbers of cavity modes remain the center of attention. In many situations, the limit to the traditional cooperative phenomena of open quantum systems and thermodynamics are taken into consideration. As the book contains the class of non-linear effects of generations of the particle in such cooperative phenomena, the author's aim was to describe squeezed problems and affect entanglement between the generation photons and phonons in cooperative processes. The new phenomenon of cooperative emission in the single- and two-quantum processes are carefully described for large audiences of specialists in the field of quantum optics and condensed matter physics, chemistry and biology.
Addressing the question how to "sum" a power series in one variable when it diverges, that is, how to attach to it analytic functions, the volume gives answers by presenting and comparing the various theories of k-summability and multisummability. These theories apply in particular to all solutions of ordinary differential equations. The volume includes applications, examples and revisits, from a cohomological point of view, the group of tangent-to-identity germs of diffeomorphisms of C studied in volume 1. With a view to applying the theories to solutions of differential equations, a detailed survey of linear ordinary differential equations is provided, which includes Gevrey asymptotic expansions, Newton polygons, index theorems and Sibuya's proof of the meromorphic classification theorem that characterizes the Stokes phenomenon for linear differential equations. This volume is the second in a series of three, entitled Divergent Series, Summability and Resurgence. It is aimed at graduate students and researchers in mathematics and theoretical physics who are interested in divergent series, Although closely related to the other two volumes, it can be read independently.
This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard mathematical tools for an advanced undergraduate course in the natural sciences or engineering. Each chapter includes exercises and suggestions for further reading, and the solutions to all exercises are provided in the last chapter. From the reviews of previous editions: This is a very interesting introductory book written for a broad audience of graduate students in natural sciences and engineering. It can be equally well used both for teac hing and self-education. Very well structured and every topic is illustrated with simple and motivating examples. This is a true guidebook to the world of complex nonlinear phenomena. (Ilya Pavlyukevich, Zentralblatt MATH, Vol. 1146, 2008) Claudius Gros' Complex and Adaptive Dynamical Systems: A Primer is a welcome addition to the literature. A particular strength of the book is its emphasis on analytical techniques for studying complex systems. (David P. Feldman, Physics Today, July, 2009).
The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications are given for this situation: first, that the mathematical tools needed to understand these topics are beyond the skill set of undergraduate students, and second, that these are speciality topics with no common theme and little overlap. Introduction to Modern Dynamics dispels these myths. The structure of this book combines the three main topics of modern dynamics - chaos theory, dynamics on complex networks, and general relativity - into a coherent framework. By taking a geometric view of physics, concentrating on the time evolution of physical systems as trajectories through abstract spaces, these topics share a common and simple mathematical language through which any student can gain a unified physical intuition. Given the growing importance of complex dynamical systems in many areas of science and technology, this text provides students with an up-to-date foundation for their future careers.
The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications are given for this situation: first, that the mathematical tools needed to understand these topics are beyond the skill set of undergraduate students, and second, that these are speciality topics with no common theme and little overlap. Introduction to Modern Dynamics dispels these myths. The structure of this book combines the three main topics of modern dynamics - chaos theory, dynamics on complex networks, and general relativity - into a coherent framework. By taking a geometric view of physics, concentrating on the time evolution of physical systems as trajectories through abstract spaces, these topics share a common and simple mathematical language through which any student can gain a unified physical intuition. Given the growing importance of complex dynamical systems in many areas of science and technology, this text provides students with an up-to-date foundation for their future careers.
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte f r Mathematik |
![]() ![]() You may like...
Towards Advanced Data Analysis by…
Christian Borgelt, Maria Angeles Gil, …
Hardcover
R4,406
Discovery Miles 44 060
Mathematical Insights into Advanced…
Yoshinori Dobashi, Shizuo Kaji, …
Hardcover
R4,102
Discovery Miles 41 020
Mathematics and Computing - ICMC 2018…
Debdas Ghosh, Debasis Giri, …
Hardcover
R2,960
Discovery Miles 29 600
Measures of Complexity - Festschrift for…
Vladimir Vovk, Harris Papadopoulos, …
Hardcover
|