Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
How can our societies be stabilized in a crisis? Why can we enjoy and understand Shakespeare? Why are fruitflies uniform? How do omnivorous eating habits aid our survival? What makes the Mona Lisa s smile beautiful? How do women keep our social structures intact? Could there possibly be a single answer to all these questions? This book shows that the statement: "weak links stabilize complex systems" provides the key to understanding each of these intriguing puzzles, and many others too. The author (recipient of several distinguished science communication prizes) uses weak (low affinity, low probability) interactions as a thread to introduce a vast variety of networks from proteins to economics and ecosystems. Many people, from Nobel Laureates to high-school students have helped to make the book understandable to all interested readers. This unique book and the ideas it develops will have a significant impact on many, seemingly diverse, fields of study."
Smooth ergodic theory of deterministic dynamical systems deals with the study of dynamical behaviors relevant to certain invariant measures under differentiable mappingsor ows. The relevance of invariantmeasures is that they describe the f- quencies of visits for an orbit and hence they give a probabilistic description of the evolution of a dynamical system. The fact that the system is differentiable allows one to use techniques from analysis and geometry. The study of transformationsand their long-termbehavior is ubiquitousin ma- ematics and the sciences. They arise not only in applications to the real world but also to diverse mathematical disciplines, including number theory, Lie groups, - gorithms, Riemannian geometry, etc. Hence smooth ergodic theory is the meeting ground of many different ideas in pure and applied mathematics. It has witnessed a great progress since the pioneering works of Sinai, Ruelle and Bowen on Axiom A diffeomorphisms and of Pesin on non-uniformly hyperbolic systems, and now it becomes a well-developed eld.
This book contains a collection of survey papers by leading researchers in ergodic theory, low-dimensional and topological dynamics and it comprises nine chapters on a range of important topics. These include: the role and usefulness of ultrafilters in ergodic theory, topological dynamics and Ramsey theory; topological aspects of kneading theory together with an analogous 2-dimensional theory called pruning; the dynamics of Markov odometers, Bratteli-Vershik diagrams and orbit equivalence of non-singular automorphisms; geometric proofs of Mather's connecting and accelerating theorems; recent results in one dimensional smooth dynamics; periodic points of nonexpansive maps; arithmetic dynamics; the defect of factor maps; entropy theory for actions of countable amenable groups.
In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, which is sometimes effectively instantaneous. The book contains reviews on such diverse areas as evolution experiments with microorganisms, the origin and evolution of viruses, evolutionary dynamics of genes and environment in cancer development, aging as an evolution-facilitating program, evolution of vision and evolution of financial markets.
Systems as diverse as clocks, singing crickets, cardiac pacemakers, firing neurons and applauding audiences exhibit a tendency to operate in synchrony. These phenomena are universal and can be understood within a common framework based on modern nonlinear dynamics. The first half of this book describes synchronization without formulae, and is based on qualitative intuitive ideas. The main effects are illustrated with experimental examples and figures, and the historical development is also outlined. The second half of the book presents the main effects of synchronization in a rigorous and systematic manner, describing both classical results on synchronization of periodic oscillators, and recent developments in chaotic systems, large ensembles, and oscillatory media.
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).
In the new edition of this classic textbook Ed Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors.
This textbook on the theory of nonlinear dynamical systems for nonmathematical advanced undergraduate or graduate students is also a reference book for researchers in the physical and social sciences. It provides a comprehensive introduction including linear systems, stability theory of nonlinear systems, bifurcation theory, chaotic dynamics. Discussion of the measure--theoretic approach to dynamical systems and the relation between deterministic systems and stochastic processes is featured. There are a hundred exercises and an associated website provides a software program, computer exercises and answers to selected book exercises.
The book presents the recent achievements on bifurcation studies of
nonlinear dynamical systems. The contributing authors of the book
are all distinguished researchers in this interesting subject area.
The first two chapters deal with the fundamental theoretical issues
of bifurcation analysis in smooth and non-smooth dynamical systems.
The cell mapping methods are presented for global bifurcations in
stochastic and deterministic, nonlinear dynamical systems in the
third chapter. The fourth chapter studies bifurcations and chaos in
time-varying, parametrically excited nonlinear dynamical systems.
The fifth chapter presents bifurcation analyses of modal
interactions in distributed, nonlinear, dynamical systems of
circular thin von Karman plates. The theories, methods and results
presented in this book are of great interest to scientists and
engineers in a wide range of disciplines. This book can be adopted
as references for mathematicians, scientists, engineers and
graduate students conducting research in nonlinear dynamical
systems.
The papers collected in this volume are contributions to the 43rd session of the Seminaire de mathematiques superieures (SMS) on "Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology." This session took place at the Universite de Montreal in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger, our administrative assistant, for her help with the organi- tion and Mr. Andre Montpetit, our technical editor, for his help in the preparation of the volume."
Almost all process systems are nonlinear in nature. Nonlinear control is traditionally an area of interest in process systems engineering which is of great practical importance. These facts notwithstanding, many process engineers have difficulty with the paradigms and results of modern nonlinear control theory because they lack the mathematical background usually associated with such methods or because of their computational difficulty and small-scale applicability in the general case. Analysis and Control of Nonlinear Process Systems overcomes these barriers. Features: a [ The necessary mathematical preliminaries for readers from a process engineering background. a [ Constant reference to the widely-known finite-dimensional linear time-invariant continuous case as a basis for extension to the nonlinear situation. a [ The most promising theories and analytical methods for nonlinear process control laid out clearly and straightforwardly with exercises to reaffirm the techniques as they are taught. a [ Emphasis on the importance of process knowledge and first-principles-based models in obtaining feasible and effective solutions in particular circumstances from general cases. a [ Illustration of applications with simple examples and case studies. Analysis and Control of Nonlinear Process Systems will interest graduate process engineers wishing to study advanced control methods either with a view to further research or application in industry as well as to academics seeking to move process control courses into more complicated but up-to-date territory. It will also be a great assistance to those in their senior undergraduate years who will form the next generation ofindustrial process engineers and need unfussy access to the most modern nonlinear control ideas.
The papers in this volume address current topics of research in nonlinear mathematics, including nonlinear dynamics with application to fluid mechanics, boundary layer transition, driven oscillators and waves. There are also papers on problems in nonlinear elasticity and mathematical biology. The book forms a coherent and accessible account of recent advances in nonlinear mathematics for students in applied mathematics, physics, and engineering.
This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders," we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process."
Consisting of 16 refereed original contributions, this volume presents a diversified collection of recent results in control of distributed parameter systems. Topics addressed include - optimal control in fluid mechanics - numerical methods for optimal control of partial differential equations - modeling and control of shells - level set methods - mesh adaptation for parameter estimation problems - shape optimization Advanced graduate students and researchers will find the book an excellent guide to the forefront of control and estimation of distributed parameter systems.
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministic phase space descriptions. This book is suitable for senior undergraduate and graduate students taking nonlinear courses from many different perspectives including physics, chemistry, biology, and engineering.
This book represents a comprehensive overview of our present understanding of chaotic behavior in a wide variety of quantum and semiclassical systems, and describes both experimental and theoretical investigations. A general introduction sets out the main features of chaos in quantum systems. Thereafter, in an authoritative collection of new or previously published papers, prominent scientists put forward their particular interpretations of quantum chaos with reference to a broad range of interesting physical systems.
This volume is based on the course notes of the 2nd NCN Pedagogical School, the second in the series of Pedagogical Schools in the frame work of the European TMR project, "Breakthrough in the control of nonlinear systems (Nonlinear Control Network)". The school consists of four courses that have been chosen to give a broad range of techniques for the analysis and synthesis of nonlinear control systems, and have been developed by leading experts in the field. The topics covered are: Differential Algebraic Methods in Nonlinear Systems; Nonlinear QFT; Hybrid Systems; Physics in Control.The book has a pedagogical character, and is specially directed to postgraduates in most areas of engineering and applied sciences like mathematics and physics. It will also be of interest to researchers and practitioners needing a solid introduction to the above topics.
This book examines the control problem for wheeled mobile robots. Several novel control strategies are developed and the stability of each controller is examined utilizing Lyapunov techniques. The performance of each controller is either illustrated through simulation results or experimental results. The final chapter describes how the control techniques developed for wheeled mobile robots can be applied to solve other problems with similar governing differential equations (e.g., twin rotor helicopters, surface vessels). Several appendices are included to provide the reader with the mathematical background utilized in the control development and stability analysis. Two appendices are also included that provide specific details with regard to the modifications that were done to commercially available mobile robots (e.g., a K2A manufactured by Cybermotion Inc. and a Pioneer II manufactured by Activemedia) to experimentally demonstrate the performance of the torque input controllers.
Control of nonlinear systems, one of the most active research areas in control theory, has always been a domain of natural convergence of research interests in applied mathematics and control engineering. The theory has developed from the early phase of its history, when the basic tool was essentially only the Lyapunov second method, to the present day, where the mathematics ranges from differential geometry, calculus of variations, ordinary and partial differential equations, functional analysis, abstract algebra and stochastic processes, while the applications to advanced engineering design span a wide variety of topics, which include nonlinear controllability and observability, optimal control, state estimation, stability and stabilization, feedback equivalence, motion planning, noninteracting control, disturbance attenuation, asymptotic tracking. The reader will find in the book methods and results which cover a wide variety of problems: starting from pure mathematics (like recent fundamental results on (non)analycity of small balls and the distance function), through its applications to all just mentioned topics of nonlinear control, up to industrial applications of nonlinear control algorithms.
Control of nonlinear systems, one of the most active research areas in control theory, has always been a domain of natural convergence of research interests in applied mathematics and control engineering. The theory has developed from the early phase of its history, when the basic tool was essentially only the Lyapunov second method, to the present day, where the mathematics ranges from differential geometry, calculus of variations, ordinary and partial differential equations, functional analysis, abstract algebra and stochastic processes, while the applications to advanced engineering design span a wide variety of topics, which include nonlinear controllability and observability, optimal control, state estimation, stability and stabilization, feedback equivalence, motion planning, noninteracting control, disturbance attenuation, asymptotic tracking. The reader will find in the book methods and results which cover a wide variety of problems: starting from pure mathematics (like recent fundamental results on (non)analycity of small balls and the distance function), through its applications to all just mentioned topics of nonlinear control, up to industrial applications of nonlinear control algorithms.
This book combines real problems of practical interest with an application of profound theory. The mathematical model is derived step by step on the basis of physical principles, and the physics behind the control problems serves as a basis for the controller design. The book demonstrates how the physics behind the mathematical models can help to successfully apply a certain control strategy. The book aims to show the practical relevance of the presented methods, methods which are often criticised as only of theoretical interest, through an examination of their industrial applications. Throughout, the book gives the unique mathematical formulation of the different disciplines involved, namely electrical, hydraulic and mechanical engineering. Yet it also points out the common mathematical structure of the different physical models. This makes it possible to transfer reliable control strategies between the disciplines.
Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible. This book presents an in-depth treatment of the conditional moment approach to GMM estimation of models frequently encountered in applied microeconometrics. It covers both large sample and small sample properties of conditional moment estimators and provides an application to empirical industrial organization. With its comprehensive and up-to-date coverage of the subject which includes topics like bootstrapping and empirical likelihood techniques, the book addresses scientists, graduate students and professionals in applied econometrics.
A coherent treatment of nonlinear systems covering chaos, fractals, and bifurcation, as well as equilibrium, stability, and nonlinear oscillations. The systems treated are mostly of difference and differential equations. The author introduces the mathematical properties of nonlinear systems as an integrated theory, rather than simply presenting isolated fashionable topics. The topics are discussed in as concrete a way as possible, worked examples and problems are used to motivate and illustrate the general principles. More advanced parts of the text are denoted by asterisks, thus making it ideally suited to both undergraduate and graduate courses.
Chaos occurs widely in both natural and man-made systems. Recently,
examples of the potential usefulness of chaotic behavior have
caused growing interest among engineers and applied scientists. In
this book the new mathematical ideas in nonlinear dynamics are
described in such a way that engineers can apply them to real
physical systems. |
You may like...
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,269
Discovery Miles 42 690
Fault-tolerant Control and Diagnosis for…
Rafael Martinez-Guerra, Fidel Melendez-Vazquez, …
Hardcover
R2,796
Discovery Miles 27 960
Modelling, Analysis, and Control of…
Ziyang Meng, Tao Yang, …
Hardcover
R2,975
Discovery Miles 29 750
Density Evolution Under Delayed Dynamics…
Jerome Losson, Michael C. Mackey, …
Hardcover
R2,789
Discovery Miles 27 890
Synchronization in Infinite-Dimensional…
Igor Chueshov, Bjoern Schmalfuss
Hardcover
R3,555
Discovery Miles 35 550
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
Emerging Frontiers in Nonlinear Science
Panayotis G. Kevrekidis, Jesus Cuevas-Maraver, …
Hardcover
R4,921
Discovery Miles 49 210
Recent Trends In Chaotic, Nonlinear And…
Jan Awrejcewicz, Rajasekar Shanmuganathan, …
Hardcover
R4,178
Discovery Miles 41 780
Elegant Simulations: From Simple…
Julien Clinton Sprott, William Graham Hoover, …
Hardcover
R2,987
Discovery Miles 29 870
|