![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.
MATRIX is Australia's international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in 2018: - Non-Equilibrium Systems and Special Functions - Algebraic Geometry, Approximation and Optimisation - On the Frontiers of High Dimensional Computation - Month of Mathematical Biology - Dynamics, Foliations, and Geometry In Dimension 3 - Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type - Functional Data Analysis and Beyond - Geometric and Categorical Representation Theory The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
This book is devoted to unstable solutions of stochastic differential equations (SDEs). Despite the huge interest in the theory of SDEs, this book is the first to present a systematic study of the instability and asymptotic behavior of the corresponding unstable stochastic systems. The limit theorems contained in the book are not merely of purely mathematical value; rather, they also have practical value. Instability or violations of stability are noted in many phenomena, and the authors attempt to apply mathematical and stochastic methods to deal with them. The main goals include exploration of Brownian motion in environments with anomalies and study of the motion of the Brownian particle in layered media. A fairly wide class of continuous Markov processes is obtained in the limit. It includes Markov processes with discontinuous transition densities, processes that are not solutions of any Ito's SDEs, and the Bessel diffusion process. The book is self-contained, with presentation of definitions and auxiliary results in an Appendix. It will be of value for specialists in stochastic analysis and SDEs, as well as for researchers in other fields who deal with unstable systems and practitioners who apply stochastic models to describe phenomena of instability.
This thesis presents the application of non-perturbative, or functional, renormalization group to study the physics of critical stationary states in systems out-of-equilibrium. Two different systems are thereby studied. The first system is the diffusive epidemic process, a stochastic process which models the propagation of an epidemic within a population. This model exhibits a phase transition peculiar to out-of-equilibrium, between a stationary state where the epidemic is extinct and one where it survives. The present study helps to clarify subtle issues about the underlying symmetries of this process and the possible universality classes of its phase transition. The second system is fully developed homogeneous isotropic and incompressible turbulence. The stationary state of this driven-dissipative system shows an energy cascade whose phenomenology is complex, with partial scale-invariance, intertwined with what is called intermittency. In this work, analytical expressions for the space-time dependence of multi-point correlation functions of the turbulent state in 2- and 3-D are derived. This result is noteworthy in that it does not rely on phenomenological input except from the Navier-Stokes equation and that it becomes exact in the physically relevant limit of large wave-numbers. The obtained correlation functions show how scale invariance is broken in a subtle way, related to intermittency corrections.
This book marks the 60th birthday of Prof. Vladimir Erofeev - a well-known specialist in the field of wave processes in solids, fluids, and structures. Featuring a collection of papers related to Prof. Erofeev's contributions in the field, it presents articles on the current problems concerning the theory of nonlinear wave processes in generalized continua and structures. It also discusses a number of applications as well as various discrete and continuous dynamic models of structures and media and problems of nonlinear acoustic diagnostics.
Written in the 1980s by one of the fathers of chaos theory, Otto E. Roessler, the manuscript presented in this volume eventually never got published. Almost 40 years later, it remains astonishingly at the forefront of knowledge about chaos theory and many of the examples discussed have never been published elsewhere. The manuscript has now been edited by Christophe Letellier - involved in chaos theory for almost three decades himself, as well as being active in the history of sciences - with a minimum of changes to the original text. Finally released for the benefit of specialists and non-specialists alike, this book is equally interesting from the historical and the scientific points of view: an unconventionally modern approach to chaos theory, it can be read as a classic introduction and short monograph as well as a collection of original insights into advanced topics from this field.
This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microlocal sheaf theory accessible to a wide audience of readers interested in symplectic geometry. Much of this material has, until now, been scattered throughout the existing literature; this text finally collects that information into one convenient volume. After providing an overview of symplectic geometry, ranging from its background to modern developments, the author reviews the preliminaries with precision. This refresher ensures readers are prepared for the thorough exploration of the Tamarkin category that follows. A variety of applications appear throughout, such as sheaf quantization, sheaf interleaving distance, and sheaf barcodes from projectors. An appendix offers additional perspectives by highlighting further useful topics. Quantitative Tamarkin Theory is ideal for graduate students interested in symplectic geometry who seek an accessible alternative to the algebraic analysis method. A background in algebra and differential geometry is recommended. This book is part of the "Virtual Series on Symplectic Geometry" http://www.springer.com/series/16019
The book faces the interplay among dynamical properties of semigroups, analytical properties of infinitesimal generators and geometrical properties of Koenigs functions. The book includes precise descriptions of the behavior of trajectories, backward orbits, petals and boundary behavior in general, aiming to give a rather complete picture of all interesting phenomena that occur. In order to fulfill this task, we choose to introduce a new point of view, which is mainly based on the intrinsic dynamical aspects of semigroups in relation with the hyperbolic distance and a deep use of Caratheodory prime ends topology and Gromov hyperbolicity theory. This work is intended both as a reference source for researchers interested in the subject, and as an introductory book for beginners with a (undergraduate) background in real and complex analysis. For this purpose, the book is self-contained and all non-standard (and, mostly, all standard) results are proved in details.
This book constitutes the proceedings of the 6th International Symposium on Chaos, Complexity and Leadership (ICCLS). Written by interdisciplinary researchers and students from the fields of mathematics, physics, education, economics, political science, statistics, the management sciences and social sciences, the peer-reviewed contributions explore chaotic and complex systems, as well as chaos and complexity theory in the context of their applicability to management and leadership. The book discusses current topics, such as complexity leadership in the healthcare fields and tourism industry, conflict management and organization intelligence, and presents practical applications of theoretical concepts, making it a valuable resource for managers and leaders.
This thesis focuses on experimental studies on collective motion using swimming bacteria as model active-matter systems. It offers comprehensive reviews of state-of-the-art theories and experiments on collective motion from the viewpoint of nonequilibrium statistical physics. The author presents his experimental studies on two major classes of collective motion that had been well studied theoretically. Firstly, swimming filamentous bacteria in a thin fluid layer are shown to exhibit true, long-range orientational order and anomalously strong giant density fluctuations, which are considered universal and landmark signatures of collective motion by many numerical and theoretical works but have never been observed in real systems. Secondly, chaotic bacterial turbulence in a three-dimensional dense suspension without any long-range order as described in the first half is demonstrated to be capable of achieving antiferromagnetic vortex order by imposing a small number of constraints with appropriate periodicity. The experimental results presented significantly advance our fundamental understanding of order and fluctuations in collective motion of motile elements and their future applications.
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).
Fully revised to match the more traditional sequence of course materials, this full-color second edition presents the basic principles and methods of thermodynamics using a clear and engaging style and a wealth of end-of-chapter problems. It includes five new chapters on topics such as mixtures, psychometry, chemical equilibrium, and combustion, and discussion of the Second Law of Thermodynamics has been expanded and divided into two chapters, allowing instructors to introduce the topic using either the cycle analysis in Chapter 6 or the definition of entropy in Chapter 7. Online ancillaries including new LMS testbanks, a password-protected solutions manual, prepared PowerPoint lecture slides, instructional videos, and figures in electronic format are available at www.cambridge.org/thermo
This book presents the proceedings of the "5th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems (CCS)." All Symposia in the series bring together scientists, engineers, economists and social scientists, creating a vivid forum for discussions on the latest insights and findings obtained in the areas of complexity, nonlinear dynamics and chaos theory, as well as their interdisciplinary applications. The scope of the latest Symposium was enriched with a variety of contemporary, interdisciplinary topics, including but not limited to: fundamental theory of nonlinear dynamics, networks, circuits, systems, biology, evolution and ecology, fractals and pattern formation, nonlinear time series analysis, neural networks, sociophysics and econophysics, complexity management and global systems.
This volume presents the proceedings of the meeting New Trends in One-Dimensional Dynamics, which celebrated the 70th birthday of Welington de Melo and was held at the IMPA, Rio de Janeiro, in November 2016. Highlighting the latest results in one-dimensional dynamics and its applications, the contributions gathered here also celebrate the highly successful meeting, which brought together experts in the field, including many of Welington de Melo's co-authors and former doctoral students. Sadly, Welington de Melo passed away shortly after the conference, so that the present volume became more a tribute to him. His role in the development of mathematics was undoubtedly an important one, especially in the area of low-level dynamics, and his legacy includes, in addition to many articles with fundamental contributions, books that are required reading for all newcomers to the field.
The importance of complexity is well-captured by Hawking's comment: "Complexity is the science of the 21st century". From the movement of flocks of birds to the Internet, environmental sustainability, and market regulation, the study and understanding of complex non-linear systems has become highly influential over the last 30 years. In this Very Short Introduction, one of the leading figures in the field, John Holland, introduces the key elements and conceptual framework of complexity. From complex physical systems such as fluid flow and the difficulties of predicting weather, to complex adaptive systems such as the highly diverse and interdependent ecosystems of rainforests, he combines simple, well-known examples - Adam Smith's pin factory, Darwin's comet orchid, and Simon's 'watchmaker' - with an account of the approaches, involving agents and urn models, taken by complexity theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
This book develops analytical methods for studying the dynamical chaos, synchronization, and dynamics of structures in various models of coupled rotators. Rotators and their systems are defined in a cylindrical phase space, and, unlike oscillators, which are defined in Rn, they have a wider "range" of motion: There are vibrational and rotational types for cyclic variables, as well as their combinations (rotational-vibrational) if the number of cyclic variables is more than one. The specificity of rotator phase space poses serious challenges in terms of selecting methods for studying the dynamics of related systems. The book chiefly focuses on developing a modified form of the method of averaging, which can be used to study the dynamics of rotators. In general, the book uses the "language" of the qualitative theory of differential equations, point mappings, and the theory of bifurcations, which helps authors to obtain new results on dynamical chaos in systems with few degrees of freedom. In addition, a special section is devoted to the study and classification of dynamic structures that can occur in systems with a large number of interconnected objects, i.e. in lattices of rotators and/or oscillators. Given its scope and format, the book can be used both in lectures and courses on nonlinear dynamics, and in specialized courses on the development and operation of relevant systems that can be represented by a large number of various practical systems: interconnected grids of various mechanical systems, various types of networks including not only mechanical but also biological systems, etc.
This book presents an original combination of three well-known methodological approaches for nonlinear data analysis: recurrence, networks, and fuzzy logic. After basic concepts of these three approaches are introduced, this book presents recently developed methods known as fuzzy recurrence plots and fuzzy recurrence networks. Computer programs written in MATLAB, which implement the basic algorithms, are included to facilitate the understanding of the developed ideas. Several applications of these techniques to biomedical problems, ranging from cancer and neurodegenerative disease to depression, are illustrated to show the potential of fuzzy recurrence methods. This book opens a new door to theorists in complex systems science as well as specialists in medicine, biology, engineering, physics, computer science, geosciences, and social economics to address issues in experimental nonlinear signal and data processing.
Though there have been significant advances in the theory and applications of linear time-invariant systems, developments regarding repetitive control have been sporadic. At the same time, there is a dearth of literature on repetitive control (RC) for nonlinear systems.Addressing that gap, this book discusses a range of basic methods for solving RC problems in nonlinear systems, including two commonly used methods and three original ones. Providing valuable tools for researchers working on the development of repetitive control, these new and fundamental methods are one of the major features of the book, which will benefit researchers, engineers, and graduate students in e.g. the field of control theory.
This book presents a unique fusion of two different research topics. One is related to the traditional mathematical problem of chases and escapes. The problem mainly deals with a situation where a chaser pursues an evader to analyze their trajectories and capture time. It dates back more than 300 years and has developed in various directions such as differential games. The other topic is the recently developing field of collective behavior, which investigates origins and properties of emergent behavior in groups of self-driving units. Applications include schools of fish, flocks of birds, and traffic jams. This book first reviews representative topics, both old and new, from these two areas. Then it presents the combined research topic of "group chase and escape", recently proposed by the authors. Although the combination is simple and straightforward, the book describes the emergence of rather intricate behavior, provoking the interest of readers for further developments and applications of related topics.
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
With the exponential growth of program trading in the global financial industry, quantum finance and its underlying technologies have become one of the hottest topics in the fintech community. Numerous financial institutions and fund houses around the world require computer professionals with a basic understanding of quantum finance to develop intelligent financial systems. This book presents a selection of the author's past 15 years' R&D work and practical implementation of the Quantum Finance Forecast System - which integrates quantum field theory and related AI technologies to design and develop intelligent global financial forecast and quantum trading systems. The book consists of two parts: Part I discusses the basic concepts and theories of quantum finance and related AI technologies, including quantum field theory, quantum price fields, quantum price level modelling and quantum entanglement to predict major financial events. Part II then examines the current, ongoing R&D projects on the application of quantum finance technologies in intelligent real-time financial prediction and quantum trading systems. This book is both a textbook for undergraduate & masters level quantum finance, AI and fintech courses and a valuable resource for researchers and data scientists working in the field of quantum finance and intelligent financial systems. It is also of interest to professional traders/ quants & independent investors who would like to grasp the basic concepts and theory of quantum finance, and more importantly how to adopt this fascinating technology to implement intelligent financial forecast and quantum trading systems. For system implementation, the interactive quantum finance programming labs listed on the Quantum Finance Forecast Centre official site (QFFC.org) enable readers to learn how to use quantum finance technologies presented in the book.
This book discusses human perception and performance within the framework of the theory of self-organizing systems. To that end, it presents a variety of phenomena and experimental findings in the research field, and provides an introduction to the theory of self-organization, with a focus on amplitude equations, order parameter and Lotka-Volterra equations. The book demonstrates that relating the experimental findings to the mathematical models provides an explicit account for the causal nature of human perception and performance. In particular, the notion of determinism versus free will is discussed in this context. The book is divided into four main parts, the first of which discusses the relationship between the concept of determinism and the fundamental laws of physics. The second part provides an introduction to using the self-organization approach from physics to understand human perception and performance, a strategy used throughout the remainder of the book to connect experimental findings and mathematical models. In turn, the third part of the book focuses on investigating performance guided by perception: climbing stairs and grasping tools are presented in detail. Perceptually relevant bifurcation parameters in the mathematical models are also identified, e.g. in the context of walk-to-run gait transitions. Chains of perceptions and actions together with their underlying mechanisms are then presented, and a number of experimental phenomena - such as selective attention, priming, child play, bistable perception, retrieval-induced forgetting, functional fixedness and memory effects exhibiting hysteresis with positive or negative sign - are discussed. Human judgment making, internal experiences such as dreaming and thinking, and Freud's concept of consciousness are also addressed. The fourth and last part of the book explores several specific topics such as learning, social interactions between two people, life trajectories, and applications in clinical psychology. In particular, episodes of mania and depression under bipolar disorder, perception under schizophrenia, and obsessive-compulsive rituals are discussed. This book is intended for researchers and graduate students in psychology, physics, applied mathematics, kinesiology, and the sport sciences who want to learn about the foundations of the field. Written for a mixed audience, the experiments and concepts are presented using non-technical language throughout. In addition, each chapter includes more advanced sections for modelers in the fields of physics and applied mathematics.
This book presents a panorama of recent developments in the theory of tilings and related dynamical systems. It contains an expanded version of courses given in 2017 at the research school associated with the Jean-Morlet chair program. Tilings have been designed, used and studied for centuries in various contexts. This field grew significantly after the discovery of aperiodic self-similar tilings in the 60s, linked to the proof of the undecidability of the Domino problem, and was driven futher by Dan Shechtman's discovery of quasicrystals in 1984. Tiling problems establish a bridge between the mutually influential fields of geometry, dynamical systems, aperiodic order, computer science, number theory, algebra and logic. The main properties of tiling dynamical systems are covered, with expositions on recent results in self-similarity (and its generalizations, fusions rules and S-adic systems), algebraic developments connected to physics, games and undecidability questions, and the spectrum of substitution tilings.
This book is a short primer in engineering mathematics with a view on applications in nonlinear control theory. In particular, it introduces some elementary concepts of commutative algebra and algebraic geometry which offer a set of tools quite different from the traditional approaches to the subject matter. This text begins with the study of elementary set and map theory. Chapters 2 and 3 on group theory and rings, respectively, are included because of their important relation to linear algebra, the group of invertible linear maps (or matrices) and the ring of linear maps of a vector space. Homomorphisms and Ideals are dealt with as well at this stage. Chapter 4 is devoted to the theory of matrices and systems of linear equations. Chapter 5 gives some information on permutations, determinants and the inverse of a matrix. Chapter 6 tackles vector spaces over a field, Chapter 7 treats linear maps resp. linear transformations, and in addition the application in linear control theory of some abstract theorems such as the concept of a kernel, the image and dimension of vector spaces are illustrated. Chapter 8 considers the diagonalization of a matrix and their canonical forms. Chapter 9 provides a brief introduction to elementary methods for solving differential equations and, finally, in Chapter 10, nonlinear control theory is introduced from the point of view of differential algebra.
This book discusses the realization and control problems of finite-dimensional dynamical systems which contain linear and nonlinear systems. The author focuses on algebraic methods for the discussion of control problems of linear and non-linear dynamical systems. The book contains detailed examples to showcase the effectiveness of the presented method. The target audience comprises primarily research experts in the field of control theory, but the book may also be beneficial for graduate students alike. |
You may like...
Satellite Communications and Navigation…
Enrico Re, Marina Ruggieri
Hardcover
R7,794
Discovery Miles 77 940
Advances in Communications Satellite…
Ifiok Otung, Thomas Butash, …
Hardcover
China Satellite Navigation Conference…
Jiadong Sun, Wenhai Jiao, …
Hardcover
R5,248
Discovery Miles 52 480
China Satellite Navigation Conference…
Jiadong Sun, Jingnan Liu, …
Hardcover
R5,267
Discovery Miles 52 670
|