![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > The hydrosphere > Oceanography (seas)
Large-scale winds and currents tend to balance Coriolis and
pressure gradient forces. The time evolution of these winds and
currents is the subject of the quasi-geostrophic theory.
What difference does it make who pays for science? Some might say none. If scientists seek to discover fundamental truths about the world, and they do so in an objective manner using well-established methods, then how could it matter who's footing the bill? History, however, suggests otherwise. In science, as elsewhere, money is power. Tracing the recent history of oceanography, Naomi Oreskes discloses dramatic changes in American ocean science since the Cold War, uncovering how and why it changed. Much of it has to do with who pays. After World War II, the US military turned to a new, uncharted theater of warfare: the deep sea. The earth sciences--particularly physical oceanography and marine geophysics--became essential to the US navy, who poured unprecedented money and logistical support into their study. Science on a Mission brings to light how the influx of such military funding was both enabling and constricting: it resulted in the creation of important domains of knowledge, but also significant, lasting, and consequential domains of ignorance. As Oreskes delves into the role of patronage in the history of science, what emerges is a vivid portrait of how naval oversight transformed what we know about the sea. It is a detailed, sweeping history that illuminates the ways in which funding shapes the subject, scope, and tenor of scientific work, and it raises profound questions over the purpose and character of American science. What difference does it make who pays? The short answer is: a lot.
The book presents a wide description of hydrographic conditions in the studied area of the Norwegian and Greenland Seas. Variability of the Atlantic Water properties have been presented on the basis of time series obtained from oceanographic measurements performed each summer from 2000 to 2007 by the Institute of Oceanology Polish Academy of Sciences. The warming observed in that period has been described in detail as well as cooling of the Atlantic Water flowing towards the Fram Strait in 2007. Furthermore, concepts regarding multi-branch structure of the West Spitsbergen Current have been presented, types of flows in individual branches as well as variability of the flows. Description of the structure, transports and variability of the sea currents is based mostly on hydrographic measurements and baroclinic calculations. The results confirm a leading role of the ocean in climate shaping and acknowledges the importance of the Thermohaline Circulation for the climate.
A vivid, up-to-date tour of the Earth's last frontier, a remote and mysterious realm that nonetheless lies close to the heart of even the most land-locked reader. The sea covers seven-tenths of the Earth, but we have mapped only a small percentage of it. The sea contains millions of species of animals and plants, but we have identified only a few thousand of them. The sea controls our planet's climate, but we do not really understand how. The sea is still the frontier, and yet it seems so familiar that we sometimes forget how little we know about it. Just as we are poised on the verge of exploiting the sea on an unprecedented scale-mining it, fertilizing it, fishing it out-this book reminds us of how much we have yet to learn. More than that, it chronicles the knowledge explosion that has transformed our view of the sea in just the past few decades, and made it a far more interesting and accessible place. From the Big Bang to that far-off future time, two billion years from now, when our planet will be a waterless rock; from the lush crowds of life at seafloor hot springs to the invisible, jewel-like plants that float at the sea surface; from the restless shifting of the tectonic plates to the majestic sweep of the ocean currents, Kunzig's clear and lyrical prose transports us to the ends of the Earth.
This comprehensive book contains contributions from specialists who provide a complete status update along with outstanding issues encompassing different topics related to deep-sea mining. Interest in exploration and exploitation of deep-sea minerals is seeing a revival due to diminishing grades and increasing costs of processing of terrestrial minerals as well as availability of several strategic metals in seabed mineral resources; it therefore becomes imperative to take stock of various issues related to deep-sea mining. The authors are experienced scientists and engineers from around the globe developing advanced technologies for mining and metallurgical extraction as well as performing deep sea exploration for several decades. They invite readers to learn about the resource potential of different deep-sea minerals, design considerations and development of mining systems, and the potential environmental impacts of mining in international waters.
The Baltic Sea is an area extensively explored by the oceanographers. Hence it is one of the most often described marine areas in the scientific literature. However, there are still several fields which are poorly investigated and reported by scientists. One of them is the carbon cycle of the Baltic Sea. Although it is believed the shelf seas are responsible for about 20% of all marine carbon dioxide uptake, while they constitute only 7% of the whole sea surface, still a scientific debate exists on the role of the Baltic Sea in the global carbon cycle. "Carbon cycle of the Baltic Sea" is intended to be a comprehensive presentation and discussion of state of the art research by biogeochemists involved in the Baltic Sea carbon cycle research. This work presents both qualitative and quantitative descriptions of the main carbon flows in the Baltic Sea as well as their possible shifts induced by climatic and global change.
"The Upper Ocean" acollection of articles from the Encyclopedia
of Ocean Sciences, 2nd Edition reflects the trend toward
theinterdisciplinary study of oceanography,
whichintegratesthedisciplines of biology, chemistry, geology and
physics. The upper ocean s contact with the atmosphere profoundly
impacts climate, making this reference both timely and critical.The
selection of articles all written by experts in their field focuses
on Air-Sea Transfers; Air-Sea Chemical Exchanges and Cycles; The
Sea Surface, Waves and Upper Ocean Processes; Upper Ocean
Circulation and Structure; Plankton;Ice; andMeasurement Techniques
includingRemote Sensing.
The Coastal Oceanis a derivative of the Encyclopedia of Ocean
Sciences, 2nd Edition, and serves as an important referenceon
coastal oceanography in one convenient and accessible source. Its
selection of articles provides currentknowledge and expertise in
the areas of: Rivers, estuaries and fjords; Salt marshes, lagoons,
beaches and rocky shores; Corals and reefs; Groundwater seepage;
Ice and permafrost; Waves, tides, surges, tsunami and seiches;
Topography and sea level; Plankton and benthos; Management,
mariculture and fisheries; Pollution; Sediments, slides, slumps and
cycling; Circulation and models; Remote sensing by acoustics,
aircraft and satellites; and rigs, structures and shipping. The
Coastal Ocean serves as an ideal reference for topical
research.
Elements of Physical Oceanography is a derivative of the
Encyclopedia of Ocean Sciences, 2nd Edition and serves as an
important reference on current physical oceanography knowledge and
expertise in one convenient and accessible source. Its selection of
articles all written by experts in their field focuses on ocean
physics, air-sea transfers, waves, mixing, ice, and the processes
of transfer of properties such as heat, salinity, momentum and
dissolved gases, within and into the ocean. Elements of Physical
Oceanography serves as an ideal reference for topical
research.
Science and Engineering of Freak Waves provides a holistic and interdisciplinary view of extreme ocean waves for both scientific and engineering applications. Readers will learn the fundamental theory of extreme waves and the implications they have on coastal structures and methods of prediction through chapters that review the definitions of extreme waves, their history and other important observations. After this, the book's authors describe the theory and modeling of extreme waves that occur in various situations. Final sections provide examples of the application of extreme wave research results to various engineering designs are presented. This book provides a comprehensive overview of the current status of our understandings on freak/rogue waves, the science of extreme waves, prediction, and their engineering applications. As such, it is a must read for physical oceanographers looking for a better understanding of prediction models and the history of these waves, and engineers looking for more information on preparedness and implications for offshore structures and shipping.
These Workshop Proceedings reflect problems concerning advanced geo-information science with a special emphasis on deep virtualization for mobile GIS. They present papers from leading scientists engaged in research on environmental issues from a modeling, analysis, information processing and visualization perspective, as well as practitioners involved in GIS and GIS applications development. The proceedings examine in detail problems regarding scientific and technological innovations and deep virtualization for mobile GIS, its potential applications, and the monitoring, planning and simulation of urban systems with respect to economic trends as related to: Artificial intelligence; Knowledge-based GIS; Spatial ontologies in GIS; Positioning and analyzing moving information; Energy GIS; GIS data integration and modeling; Environmental management; Urban GIS; Transportation GIS; Underwater acoustics and GIS; GIS and real-time monitoring systems; GIS algorithms and computational issues; Data reliability and quality assurance for open data; Spatial and data quality; and lastly Open source GIS.
For more than 200 years, the Fourier Transform has been one of
the most important mathematical tools for understanding the
dynamics of linear wave trains. Nonlinear Ocean Waves and the
Inverse Scattering Transform presents the development of the
nonlinear Fourier analysis of measured space and time series, which
can be found in a wide variety of physical settings including
surface water waves, internal waves, and equatorial Rossby waves.
This revolutionary development will allow hyperfast numerical
modelling of nonlinear waves, greatly advancing our understanding
of oceanic surface and internal waves. Nonlinear Fourier analysis
is based upon a generalization of linear Fourier analysis referred
to asthe "inverse scattering transform," the fundamental building
block of which is a generalized Fourier series called the Riemann
theta function. Elucidating the art and science of implementing
these functions in the context of physical and time series analysis
is the goal of this book. geared toward both the introductory and advanced reader venturing further into mathematical and numerical analysis suitable for classroom teaching as well as research "
Ocean Currents is a derivative of the Encyclopedia of Ocean Sciences, 2nd Edition and serves as an important reference on current ocean current knowledge and expertise in one convenient and accessible source. Its selection of articles all written by experts in their field focuses on key ocean current concepts. Its topics include ocean currents, the circulation of deep water, the contrasting circulations of the seas, the circulation in fjords, estuaries and the effects of rivers, and the intermittency and variability of the oceans. Ocean Currents serves as an ideal reference for topical research. References related articles on ocean currents to facilitate
further research
This book on the current state of knowledge of submarine geomorphology aims to achieve the goals of the Submarine Geomorphology working group, set up in 2013, by establishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field. Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections - (i) Introduction & history, (ii) Data & methods, (ii) Submarine landforms & processes and (iv) Conclusions & future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this. Submarine geomorphology is a priority for many research institutions, government authorities and industries globally. The book is useful for undergraduate and graduate students, and professionals with limited training in this field.
Accretionary prisms in convergent margins are natural laboratories for exploring initial orogenic processes and mountain building episodes. They are also an important component of continental growth both vertically and laterally. Accretionary prisms are seismically highly active and their internal deformation via megathrusting and out-of-sequence faulting are a big concern for earthquake and tsunami damage in many coastal cities around the Pacific Rim. The geometries and structures of modern accretionary prisms have been well imaged seismically and through deep drilling projects of the Ocean Drilling Program (and recently IODP) during the last 15 years. Better understanding of the spatial distribution and temporal progression of accretionary prism deformation, structural and hydrologic evolution of the decollement zone (tectonic interface between the subducting slab and the upper plate), chemical gradients and fluid flow paths within accretionary prisms, contrasting stratigraphic and deformational framework along-strike in accretionary prisms, and the distribution and ecosystems of biological communities in accretionary prism settings is most important in interpreting the evolution of ancient complex sedimentary terrains and orogenic belts in terms of subduction-related processes. This book is a collection of interdisciplinary papers documenting the geological, geophysical, geochemical, and paleontological features of modern accretionay prisms and trenches in the northwestern Pacific Ocean, based on many submersible dive cruises, ODP drilling projects, and geophysical surveys during the last 10 years. It also includes several papers presenting the results of systematic integrated studies of recent to ancient on-land accretionary prisms in comparison to modern analogues. The individual chapters are data and image rich, providing a major resource of information and knowledge from these critical components of convergent margins for researchers, faculty members, and graduate and undergraduate students. As such, the book will be a major and unique contribution in the broad fields of global tectonics, geodynamics, marine geology and geophysics, and structural geology and sedimentology.
Submarine mass movements are a hidden geohazard with large destructive potential for submarine installations and coastal areas. This hazard and associated risk is growing in proportion with increasing population of coastal urban agglomerations, industrial infrastructure, and coastal tourism. Also, the intensified use of the seafloor for natural resource production, and deep sea cables constitutes an increasing risk. Submarine slides may alter the coastline and bear a high tsunamogenic potential. There is a potential link of submarine mass wasting with climate change, as submarine landslides can uncover and release large amounts greenhouse gases, mainly methane, that are now stored in marine sediments. The factors that govern the stability of submarine slopes against failure, the processes that lead to slope collapses and the collapse processes by themselves need to be better understood in order to foresee and prepare society for potentially hazardous events. This book volume consists of a collection of cutting edge scientific research by international experts in the field, covering geological, geophysical, engineering and environmental aspects of submarine slope failures. The focus is on understanding the full spectrum of challenges presented by this major coastal and offshore geohazard.
The Second Edition of The Drift of Sea Ice presents the fundamental laws of sea ice drift which come from the material properties of sea ice and the basic laws of mechanics. The resulting system of equations is analysed for the general properties of sea ice drift, the free drift model and analytical models for ice drift in the presence of internal friction, and the construction of numerical ice drift models is detailed. This second edition of a much lauded work, unique on this topic in the English language, has been revised, updated and expanded with much new information and outlines recent results, in particular in relation to the climate problem, mathematical modelling and ice engineering applications. The current book presents the theory, observations, mathematical modelling techniques, and applications of sea ice drift science. The theory is presented from the beginning on a graduate student level, so that students and researchers coming from other fields such as physical oceanography, meteorology, physics, engineering, environmental sciences or geography can use the book as a source book or self-study material. First the drift ice material is presented ending with the concept of ice state the relevant properties in sea ice dynamics. Ice kinematics observations are widely presented with the mathematical analysis methods, and thereafter come drift ice rheology to close the triangle material kinematics stress. The momentum equation of sea ice is derived in detail and its general properties are carefully analysed. Then follow two chapters on analytical models: free drift and drift in the presence of internal friction: These are very important tools in understanding the dynamical behaviour of sea ice. The last topical chapter is numerical models, which are the modern tool to solve ice dynamics problem in short term and long term problems. The closing chapter summarises sea ice dynamics applications and the need of sea ice dynamic knowledge and gives some final remarks on the future of this branch of science.
Reef fish spawning aggregations, ranging from small groups to many tens of thousands of individuals, are spectacular but poorly known natural phenomena whereby fish assemble at specific times and locations to spawn. For some species these large groups may be the only form of reproduction, the high fish numbers briefly giving a false impression of stability and abundance-an 'illusion of plenty'. They are often a focus for intensive seasonal fishing because of their predictability and because many important commercial fishes form them. Highly vulnerable to overexploitation, many aggregations and their associated fisheries, have disappeared or are in decline. Few are effectively managed or incorporated into protected areas. Aggregations are not well understood by fishery scientists, managers and conservationists and their significance little appreciated by fishers or the wider public. To ensure their persistence to replenish important fisheries in coral ecosystems, maintain their ecosystem function and continue to delight divers, a significant change in perspective is needed to foster protection and management. This book provides comprehensive and practical coverage of the biology, study and management of reef fish aggregations, exploring their how, when, where, and why. It explores ways to better protect, study, manage and conserve them, while identifying key data gaps and questions. The text is extensively illustrated with many unique, never before published, photographs and graphics. Case studies on over 20 interesting and important fishes are included, outlining their biology and fisheries and highlighting major concerns and challenges.
It all began with Markus Jochum approaching one of us (HvS) - "when you guys are doing interviews with senior scientists from oceanography and related sciences, why are you not doing Walter Munk?" Indeed, why not? Walter Munk, an icon in oceanography, had just given a wonderful talk in a symposium in honor of his 90th birthday, sweeping a grand circle from his earliest work with Chip Cox on airborne measurements of ocean surface roughness to the latest satellite data - not simply a review, but the struggle of an active scientist opening up new perspectives - as inspiring and stimulating as when one of us (KH) rst met him at the Ocean Waves Conference in Easton in 1961 (Fig. I. 1). Walter immediately agreed to share with us his recollections on the nearly seventy years of his path-breaking contributions in a sheer amazing range of topics, from ocean waves, internal waves, ocean currents, tides, tsunamis, sea level, microseisms and the rotation of the earth to ocean acoustic tomography. With "you guys" Markus was referring to HvS and the various partners HvS had 1 invited to join him in conducting a series of interviews of retired colleagues.
Sedimentary coasts with their unique forms of life and productive ecosystems are one of the most threatened parts of the biosphere.This volume analyzes and compares ecological structures and processes at sandy beaches, tidal mudflats and in shallow coastal waters all around the world. Analyses of local processes are paired with comparisons between distant shores, across latitudinal gradients or between separate biogeographic provinces. Emphasis is given to suspension feeders in coastal mud and sand, to biogenic stabilizations and disturbances in coastal sediments, to seagrass beds and faunal assemblages across latitudes and oceans, to recovery dynamics in benthic communities, shorebird predation, and to experimental approaches to the biota of sedimentary shores.
This book presents the R software environment as a key tool for oceanographic computations and provides a rationale for using R over the more widely-used tools of the field such as MATLAB. Kelley provides a general introduction to R before introducing the 'oce' package. This package greatly simplifies oceanographic analysis by handling the details of discipline-specific file formats, calculations, and plots. Designed for real-world application and developed with open-source protocols, oce supports a broad range of practical work. Generic functions take care of general operations such as subsetting and plotting data, while specialized functions address more specific tasks such as tidal decomposition, hydrographic analysis, and ADCP coordinate transformation. In addition, the package makes it easy to document work, because its functions automatically update processing logs stored within its data objects. Kelley teaches key R functions using classic examples from the history of oceanography, specifically the work of Alfred Redfield, Gordon Riley, J. Tuzo Wilson, and Walter Munk. Acknowledging the pervasive popularity of MATLAB, the book provides advice to users who would like to switch to R. Including a suite of real-life applications and over 100 exercises and solutions, the treatment is ideal for oceanographers, technicians, and students who want to add R to their list of tools for oceanographic analysis.
This book is dedicated to studying the ocean with radar tools, in
particular, with space radars. Being intended mainly for the
scientists preoccupied with the problem (as well as senior course
students), it concentrates and generalizes the knowledge scattered
over specialized journals. The significant part of the book
contains the results obtained by the author.
The authors of this timely reference provide an updated and global view on ocean wave energy conversion and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems. |
![]() ![]() You may like...
Application of Holomorphic Functions in…
Klaus Gurlebeck, Klaus Habetha, …
Hardcover
R4,080
Discovery Miles 40 800
The U.S. Consul at Work
Charles Stuart Kennedy, William Morgan
Hardcover
R2,786
Discovery Miles 27 860
The Epididymis: From Molecules to…
Bernard Robaire, Barry Hinton
Hardcover
R4,696
Discovery Miles 46 960
|