![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > The hydrosphere > Oceanography (seas)
Despite their global importance, little is known about the few existing examples of impacts into marine environments and icy targets. They are among the least understood and studied parts of impact crater geology. The icy impacts are also of great importance in understanding the developments of the outer planets and their satellites such as Mars or Europa. Furthermore, the impact mechanisms, crater formation and collapse, melt production and the ejecta distribution are scarcely known for impact on targets other than the "classical" solid silicates of the continental crust. The reaction of water and ice to impacts clearly deserves a more thorough study. The understanding of impact effects and consequences in the case of aqueous hits, soft sediments and icy targets has not been thoroughly explored and comprises the main focus of this book. A number of papers in the field of hypervelocity impacts on ice are included. These cover a review of available literature in the field of laboratory studies of such impacts, large impact structures on Titan, predicting impact cratering on a comet nucleus, and a novel report on the survival of bacteria fired at hypervelocity into icy surfaces. This latter paper is concerned with astrobiology and in particular Panspermia (natural migration of life through space).
Biological processes in the oceans play a crucial role in regulating the fluxes of many important elements such as carbon, nitrogen, sulfur, oxygen, phosphorus, and silicon. As we come to the end of the 20th century, oceanographers have increasingly focussed on how these elements are cycled within the ocean, the interdependencies of these cycles, and the effect of the cycle on the composition of the earth's atmosphere and climate. Many techniques and tools have been developed or adapted over the past decade to help in this effort. These include satellite sensors of upper ocean phytoplankton distributions, flow cytometry, molecular biological probes, sophisticated moored and shipboard instrumentation, and vastly increased numerical modeling capabilities. This volume is the result of the 37th Brookhaven Symposium in Biology, in which a wide spectrum of oceanographers, chemists, biologists, and modelers discussed the progress in understanding the role of primary producers in biogeochemical cycles. The symposium is dedicated to Dr. Richard W. Eppley, an intellectual giant in biological oceanography, who inspired a generation of scientists to delve into problems of understanding biogeochemical cycles in the sea. We gratefully acknowledge support from the U.S. Department of Energy, the National Aeronautics and Space Administration, the National Science Foundation, the National Oceanic and Atmospheric Administration, the Electric Power Research Institute, and the Environmental Protection Agency. Special thanks to Claire Lamberti for her help in producing this volume.
It is only in the past few years that methods of adequate sensitivity have become available for true ultra-trace metal determinations in water. In the case of organics in seawater it has now become possible to resolve the complex mixtures of organics in seawater and achieve the required very low detection limits. Fortunately, the interest in micro-constituents in the seawater both from the environmental and the nutrient balance points of view has coincided with the availability of advanced instrumentation capable of meeting the analytical needs. This complete and up-to-date compilation of the currently employed proven methods for the chemical analysis of seawaters includes 45 tables and 48 figures. The author presents the methods in a logical manner so that the reader can readily learn how to perform them and understand the types of instrumentation available. It helps the practitioner to implement these methods successfully into his laboratory and to apply them quickly and reliably. In addition, the detailed description of each method enables the analyst to set up new analytical methods meeting the needs for the detection of new analytes. The volume covers all aspects of the analysis of seawater using both classical and the most advanced recently introduced physical techniques. It is an invaluable source for the analysts, oceanographers, fisheries experts, politicians and decision maker engaged in seawater environmental protection.
The editor's aim is to provide current scientists as well as future generations with a historical overview of the developments in physical oceanography over the last four decades. To that end, several people that have played major roles over the last years will contribute chapters on respectively oceanographic observations, theory of physical oceanography and modelling. The book will illustrate how research is conducted in physical oceanography, which methods are being used, what the results are and how these as well as various ideas are being communicated, between the different branches in physical oceanography.
Since the publication of Jerlov's classic volume on optical oceanography in 1968, the ability to predict or model the submarine light field, given measurements of the inherent optical properties of the ocean, has improved to the point that model fields are very close to measured fields. In the last three decades, remote sensing capabilities have fostered powerful models that can be inverted to estimate the inherent optical properties closely related to substances important for understanding global biological productivity, environmental quality, and most nearshore geophysical processes. This volume presents an eclectic blend of information on the theories, experiments, and instrumentation that now characterize the ways in which optical oceanography is studied. Through the course of this interdisciplinary work, the reader is led from the physical concepts of radiative transfer to the experimental techniques used in the lab and at sea, to process-oriented discussions of the biochemical mechanisms responsible for oceanic optical variability. The text will be of interest to researchers and students in physical and biological oceanography, biology, geophysics, limnology, atmospheric optics, and remote sensing of ocean and global climate change.
This book provides an up-to-date introduction to the theory of sound propagation in the ocean. The text treats both ray and wave propagation and pays considerable attention to stochastic problems such as the scattering of sound at rough surfaces and random inhomogeneities. An introductory chapter that discusses the basic experimental data complements the following theoretical chapters. New material has been added throughout for this third edition. New topics covered include: - inter-thermocline lenses and their effect on sound fields- weakly divergent bundles of rays - ocean acoustic tomography - coupled modes - sound scattering by anisotropic volume inhomogeneities with fractal spectra - Voronovich's approach to sound scattering from the rough sea surface. In addition, the list of references has been brought up to date and the latest experimental data have been included.
Rapid development of Earth observation satellite using remote sensing techniques enables observations of the oceanic processes by sea and airborne study to be carried out over vast areas in a short time. This first book written by Russian and Norwegian scientists is an analysis of studies of the Kara Sea and presents a unique catalogue of environmental and pollution data of the joint Norwegian and Russian oceanographic expedition studies of the Kara Sea spanning three decades.
In this book, methodology of dynamical systems theory is applied to investigate the physics of the large-scale ocean circulation. Topics include the dynamics of western boundary currents such as the Gulf Stream in the Atlantic Ocean and the Kurosio in the Pacific Ocean, the stability of the thermohaline circulation, and the El NiAo/Southern Oscillation phenomenon in the Tropical Pacific. The book also deals with the numerical methods to apply bifurcation analysis on large-dimensional dynamical systems, with tens of thousands (or more) degrees of freedom, which arise through discretization of ocean and climate models. The novel approach to understand the phenomena of climate variability is through a systematic analysis of the solution structure of a hierarchy of models using these techniques. In this way, a connection between the results of the different models within the hierarchy can be established. Mechanistic description of the physics of the results is provided and, where possible, links with results of state-of-the-art ocean (and climate) models and observations are sought. The reader is expected to have a background in basic fluid dynamics and applied mathematics, although the level of the text sometimes is quite introductory. Each of the chapters is rather self-contained and many details of derivations are provided. Exercises presented at the end of each chapter make it a perfect graduate-level text. This book is aimed at graduate students and researchers in meteorology, oceanography and related fields who are interested in tackling fundamental problems in dynamical oceanography and climate dynamics.
This book which is the outcome of a NATO-Advanced Study Institute on Mod elling the Ocean Circulation and Geochemical Tracer Transport is concerned with using models to infer the ocean circulation. Understanding our climate is one of the major problems of the late twentieth century. The possible climatic changes resulting from the rise in atmospheric carbon dioxide and other trace gases are of primary interest and the ocean pla. ys a ma. jor role in determining the magnitude, temporal evolution and regional distribution of those changes. Because of the poor observational basis the ocean general circulation is not well understood. The World Ocean Circulation Experiment (WOCE) which is now underway is an attempt to improve our knowledge of ocean dynamics and thermodynamics on global scales relevant to climate change. Despite those efforts, the oceanic data base is likely to remain scarce and it is crucial to use appropriate methods in order to extract the maximum amount of information from observations. The book contains a thorough analysis of methods to combine data of val'ious types with dynamical concepts, and to assimilate data directly into ocean models. The properties of geocl;temical tracers such as HC, He, Tritium and Freons and how they may be used to impose integral constraints on the ocean circulation are discussed.
This book presents new research on the mathematical description of tsunamis and hurricanes. The description includes dissipative terms and does not contain singularities or two valued functions. The book uses the equivalence principle of solutions of nonlinear large gas dynamic waves and of solutions of water wave equations. An extension of the continuity equation by a source term due to evaporation rates of salt seawater help to understand hurricanes. Detailed formula, tables, and results of the calculations are given.
The aim of the book is to present for non-specialist researchers as well as for experts a comprehensive overview of the background, key ideas, basic methods, implementation details and a selection of solutions offered by a novel technology for the optimisation of the location of dangerous offshore activities in terms of environmental criteria, as developed in the course of the BalticWay project. The book consists of two parts. The first part introduces the basic principles of ocean modeling and depicts the long way from the generic principles to the practical modeling of oil spills and of the propagation of other adverse impacts. The second part focuses on the techniques for solving the inverse problem of the quantification of offshore areas with respect to their potential to serve as a source of environmental danger to vulnerable regions (such as spawning, nursing or also tourist areas). The chapters are written in a tutorial style; they are mostly self-contained and understandable for non-specialist researchers and students. They are carefully peer-reviewed by international experts. The goal was to produce a book that highlights all key steps, methods, models and data sets it is necessary to combine in order to produce a practically usable technology and/or decision support system for a particular sea region. Thus the book is useful not only as a description and a manual of this particular technology but also as a roadmap highlighting the complicated technical issues of ocean modeling for practical purposes. It describes the approaches taken by the authors in an understandable way and thus is useful for educational purposes, such as a course in industrially and environmentally relevant applications of ocean modeling.
The need for tsunami research and analysis has grown dramatically following the devastating tsunami of December 2004, which affected Southern Asia. This book pursues a detailed theoretical and mathematical analysis of the fundamentals of tsunamis, especially the evolution and dynamics of tsunamis and other great waves. Of course, it includes specific measurement results from the 2004 tsunami, but the emphasis is on the nature of the waves themselves and their links to nonlinear phenomena.
In many geological epochs, glacial sediments are widespread. This type of sedimentation results from the interaction between atmosphere, cryosphere, hydrosphere and biosphere under temperatures ranging from 0 to -80. Two types of glacial sediments exists: those from sea-ice and those from icebergs. Both types can be subdivided into various subfacies. Most widespread in the Northern Hemisphere is the Siberian subfacies, characterized by silt and clay and often misinterpreted as sediments of temperate zones. This reference book for researchers working on this kind of sediments provides a complete overview of the various glacial deposits in the ocean.
This book provides a detailed description of light absorption and absorbents in seawaters with respect to provenance, region of the sea, depth of the occurrence and trophicity. The text is based on a substantial body of contemporary research results taken from the subject literature (over 400 references) and the work of the authors over a period of 30 years.
The book gives a first consistent overview of methods and applications of ocean forecasting around the world. This sector of marine science and technology is developing rapidly due to the increasing need for reliable, multidisciplinary information about the marine system, allowing the sustainable usage of coastal resources and the mitigation of global change effects. Several chapters are devoted to the conceptual and theoretical bases of ocean forecasting, ranging from the design of observational and modelling systems, data assimilation techniques and numerical ecosystem modelling. The book also includes examples of modelling/forecasting systems currently in use or being set-up in the ocean for different space and time scales. The book is useful for advanced graduate students as well as scientists in related disciplines, as it enables them to understand the present level of knowledge and performance of existing forecasting systems.
In Chapter 1 the methodological principles of systemization and visualization of multidimensional ecological information for its operational dissemination among potential users are stated. Their realization results in creation of the geographic-and ecologic model of marine basin as an information base for diagnosis of the marine ecosystem state, estimation of consequences of economic activity, and modelling of its changes with the use of mathematical tools. In Chapter 2 the geographic-and-ecological aspects of mathematical modelling of marine ecosystems, the possibilities and peculiarities of the most adequate models, the Russian hydrodynamic model of oil spills "SPILLMOD" and hydroecological model of organogenic compound transformation in the sea, are investigated. In the following six Chapters the examples of practical realization of geographic-and-ecological (as information source) and mathematical (as computing apparatus) modelling at the investigations of specific ecological problems associated with consequences of natural hazards and economic activity on aquatory and within the whole Black Sea basin are given. "
Satelli te oceanography, as the term is used in this book, is a generic term that means application of the technology of aerospace electromagnetic remote sensing to the study of the oceans. The key words here are "application of technology **. to the study of the oceans." The goal is to learn more about our planet's hydrosphere. As such, remote sensing technology is another tool in the oceanographer's sea bag, just like a bathythermograph or a plankton net. But is a whole book necessary if remote sensing is just another tool? While it is true that no one has written a whole book on plankton nets, volumes have been written about what is found in those nets. Today's state-of-the-art measurements from spacecraft or aircraft first must be interpreted in terms of their physics; then the interpretations must be understood in terms of oceanic processes. This is not materially different from the analogy to Ii plankton net; marine biolo gists still argue about what didn't get caught in the net.
This book is a research monograph on high-Frequency Seafloor Acoustics. It is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. It provides a critical evaluation of the data and models pertaining to high-frequency acoustic interaction with the seafloor, which will be of interest to researchers in underwater acoustics and to developers of sonars. Models and data are presented so as to be readily usable, backed up by extensive explanation. Much of the data is new, and the discussion in on two levels: concise descriptions in the main text backed up by extensive technical appendices.
The transfer across the surface of environmental waters is of interest as an important phase in the geophysical and natural biochemical cycles of numer ous substances; indeed it governs the transition, one way or the other, be tween the dissolved state in the water and the gaseous state in the atmo sphere. Especially with increasing population and industrialization, gas transfer at water surfaces has become a critical factor in the understanding of the various pathways of wastes in the environment and of their engineering management. This interfacial mass transfer is, by its very nature, highly complex. The air and the water are usually in turbulent motion, and the interface be tween them is irregular, and disturbed by waves, sometimes accompanied by breaking, spray and bubble formation. Thus the transfer involves a wide variety of physical phenomena occurring over a wide range of scales. As a consequence, scientists and engineers from diverse disciplines and problem areas, have approached the problem, often with greatly differing analytical and experimental techniques and methodologies."
Ocean Hotspots provides a comprehensive overview of recent and ongoing research on intraplate volcanism in the ocean basins with special emphasis on the Pacific Ocean. The geology of the seamounts and their associated seamount chains is described, along with detailed geophysical, geochemical and hydrothermal observations made by a multi-disciplinary group of marine geoscientists. These observations lead to a deeper understanding of how the ascending mantle melts, represented by hotspots, are able to penetrate the lithosphere, build seamounts, and enhance hydrothermal circulation. The "fixed" hotspot-generated seamount chains also provide key constraints on plate tectonic reconstructions on the Earth's crust.
AMAZING ILLUSTRATIONS: Explore Caroline Selme's intricately drawn underwater world, bursting with minute detail! ADDICTIVE GAMEPLAY: A matching game for the whole family with super-detailed underwater scenes that reward returning again and again. HOURS OF COZY FUN: Take a deep dive and learn to recognize fish from around the world - all from the comfort of home! PERFECT GIFT: Illustration-led, highly finished, 57-card unique matching game, for maximum gifting appeal. COLLECT THE SERIES: From the illustrator of Laurence King's Dinosaur Bingo, Jungle Bingo, I Saw It First! and Who's Hiding in the Jungle? Pick a card, any card! Now pick another. Between any animal and ocean card there will only ever be one animal that features on both. Can you be the first to find it? Featuring Caroline Selmes's delightful animal illustrations and undersea scenes, Who's Hiding in the Ocean? will have the whole family vying for victory!
Remote Sensing of the Changing Oceans is a comprehensive account of the basic concepts, theories, methods and applications used in ocean satellite remote sensing. The book provides a synthesis of various new ideas and theories and discusses a series of key research topics in oceanic manifestation of global changes as viewed from space. A variety of research methods used in the analysis and modeling of global changes are introduced in detail along with numerous examples from around the world s oceans. The authors review the changing oceans at different levels, including Global and Regional Observations, Natural Hazards, Coastal Environment and related scientific issues, all from the unique perspective of Satellite Observation Systems. Thus, the book not only introduces the basics of the changing oceans, but also new developments in satellite remote sensing technology and international cooperation in this emerging field. Danling Tang (Lingzis) received her Ph.D from Hong Kong University of Science and Technology. She conducted research and teaching in Hong Kong, USA, Japan, and South Korea for more than 10 years; in 2004, she received 100 Talents Program of Chinese Academy of Sciences and returned to China. She was a professor of Fudan University, and now is a Leading Professor of Remote Sensing of Marine Ecology and Environment at the South China Sea Institute of Oceanology, Chinese Academy of Sciences. Dr. Tang has been working on satellite remote sensing of marine ecology and environment; her major research interests include ocean dynamics of phytoplankton bloom, global environmental changes, and natural hazards. Dr. Tang has organized several international conferences, workshops, and training, she also services as member of organizing committee for several international scientific organizations; she was the Chairman of the 9th Pan Ocean Remote Sensing Conference (PORSEC 2008), and currently is the President-elect of PORSEC Association.
Marine Structures Engineering is designed to help engineers meet the growing worldwide demand for construction of new ports and the modernization of existing ports and terminals. It provides an authoritative guide to the design, construction, rehabilitation, repair, and maintenance of port and harbor structures. Each chapter is self-contained, allowing readers to access specific information. The Author draws on his extensive experience in offshore structure and port engineering to demonstrate evaluation, rehabilitation, repair, and maintenance of in-service marine structures. Also covered in detail are state-of-the-art approaches to: *marine structures in cold regions, with special attention to the role of ice loads, permafrost, and other ice effects *shiplifts, marine railways, shipways, and dry docks *offshore moorings *floating breakwaters *marinas *structures that protect bridge piers from ship impact. Offering practical information on all aspects of marine structures, this book serves as an indispensable resource to all engineers and professionals involved in design, construction, maintenance, and modernization of ports and harbors.
The book describes what these models are, what they are based on, how they function, and then, most innovatively, how they can be used to generate new useful knowledge about the environmental system. Discusses this generation of knowledge by computer models from an epistemological perspective and illustrates it by numerous examples from applied and fundamental research. Includes ample technical appendices and is a valuable source of information for graduate students and scientists alike working in the field of environmental sciences. |
You may like...
Mesoscale Models - From Micro-Physics to…
Sinisa Mesarovic, Samuel Forest, …
Hardcover
R4,055
Discovery Miles 40 550
Dynamics Of Public Relations And…
Annette Clear, Maritha Pritchard, …
Paperback
R508
Discovery Miles 5 080
|