![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies
Progress in optical fiber sensors The field of optical fiber sensor technology is one that continues to expand and develop at a rate that could barely have been predicted a few years ago. The wealth of publications appearing in the technical literature and the burgeoning number of papers presented at the now well-established series of national and international conferences, which are attended by a wide selection of technically qualified optoelectronics professionals, gives a clear indication of both the range and scale of the devices and applications now seen in the subject. Such a rapid expansion makes it very difficult for the scientist and engineer, under pressure to be both informed and effective for an employer, to attend all these meetings, selectively read the appropriate literature and be able quickly to gain the knowledge in those specific areas which will give the best advantage for the work in hand. To that end, this volume has been planned and carefully designed to provide an essential overview, and detailed specific information, on those novel and exciting aspects of optical fiber sensor technology that have recently emerged, with particular focus on the devices and the exciting applications of this part of optoelectronic technology in the vast international measurement and instrumentation area.
This book provides a comprehensive description of microsensors for mechanical quantities (flow, pressure, force, inertia) fabricated by silicon micromachining. Since the design of such sensors requires interdisciplinary teamwork, the presentation is made accessible to engineers trained in electrical and mechanical engineering, physics and chemistry. The reader is guided through the micromachining fabrication process. A chapter on microsensor packaging completes the discussion of technological problems. The description of the basic physics required for sensor design includes the mechanics of deformation and the piezoresistive transduction to electrical signals. There is also a comprehensive discussion of resonant sensors, the hydrodynamics and heat transfer relevant for flow sensors, and, finally, electronic interfacing and readout circuitry. Numerous up-to-date case studies are presented, together with the working, fabrication and design of the sensors.
This volume, which brings together research presented at the IUTAM Symposium Intelligent Multibody Systems - Dynamics, Control, Simulation, held at Sozopol, Bulgaria, September 11-15, 2017, focuses on preliminary virtual simulation of the dynamics of motion, and analysis of loading of the devices and of their behaviour caused by the working conditions and natural phenomena. This requires up-to-date methods for dynamics analysis and simulation, novel methods for numerical solution of ODE and DAE, real-time simulation, passive, semi-passive and active control algorithms. Applied examples are mechatronic (intelligent) multibody systems, autonomous vehicles, space structures, structures exposed to external and seismic excitations, large flexible structures and wind generators, robots and bio-robots. The book covers the following subjects: -Novel methods in multibody system dynamics; -Real-time dynamics; -Dynamic models of passive and active mechatronic devices; -Vehicle dynamics and control; -Structural dynamics; -Deflection and vibration suppression; -Numerical integration of ODE and DAE for large scale and stiff multibody systems; -Model reduction of large-scale flexible systems. The book will be of interest for scientists and academicians, PhD students and engineers at universities and scientific institutes.
Over a decade John Glanville and Bill Wolmuth undertook an important horological project for the British Museum. This involved establishing a representative collection, for the Museum, of twentieth-century domestic mechanical clocks made in England and Wales using industrialized manufacturing methods. This remarkable book is the culmination of their efforts. Wide-ranging in its coverage, it will be a key reference tool for horologists, horoligical students, collectors, and antiques and clock dealers. It provides a comprehensive history of each significant manufacturer, including the principal people involved and covers the various mechanical clock movements that were produced. Previously unpublished research about the manufacturers, the clocks they made and the dates when they were manufactured is presented. Finally, this book informs readers how they can identify and date almost all of the clocks they are likely to encounter.
This book covers new materials used as analytical devices for increasing the interactions between the development of new analytical devices and materials science. The authors describe how different types of materials such as polymers, self-assembled layers, phthalocyanines, and nanomaterials can further enhance sensitivity and promote selectivity between analytes for different applications. They explain how continuing research and discussion into materials science for chemical sensing is stimulating the search for different strategies and technologies that extract information for these chemical sensors in order to obtain a chemical fingerprint of samples.
This book presents essential algorithms for the image processing pipeline of photo-printers and accompanying software tools, offering an exposition of multiple image enhancement algorithms, smart aspect-ratio changing techniques for borderless printing and approaches for non-standard printing modes. All the techniques described are content-adaptive and operate in an automatic mode thanks to machine learning reasoning or ingenious heuristics. The first part includes algorithms, for example, red-eye correction and compression artefacts reduction, that can be applied in any photo processing application, while the second part focuses specifically on printing devices, e.g. eco-friendly and anaglyph printing. The majority of the techniques presented have a low computational complexity because they were initially designed for integration in system-on-chip. The book reflects the authors' practical experience in algorithm development for industrial R&D.
Part I introduces the basic "Principles and Methods of Force Measurement" according to a classification into a dozen of force transducerstypes: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the "(Strain Gauge) Force Transducers Components", evolving from the classical force transducer to the digital / intelligent one, with the incorporation of three subsystems (sensors, electromechanics and informatics). The elastic element (EE) is the "heart" of the force transducer and basically determines its performance. A 12-type elastic element classification is proposed (stretched / compressed column or tube, bending beam, bending and/or torsion shaft, middle bent bar with fixed ends, shear beam, bending ring, yoke or frame, diaphragm, axial-stressed torus, axisymmetrical and voluminous EE), with emphasis on the optimum place of the strain gauges. The main properties of the associated Wheatstone bridge, best suited for the parametrical transducers, are examined, together with the appropriate electronic circuits for SGFTs. The handbook fills a gap in the field of Force Measurement, both experts and newcomers, no matter of their particular interest, finding a lot of useful and valuable subjects in the area of Force Transducers; in fact, it is the first specialized monograph in this inter- and multidisciplinary field.
Proceedings of the 22nd Course of the International School of Quantum Electronics, held 27 November-2 December 1997, in Erice, Italy. In recent years, fiber optical sensors and optical microsystems have assumed a significant role in sensing and measurement of many kinds. These optical techniques are utilised in a wide range of fields, including biomedicine, environmental sensing, mechanical and industrial measurement, and art preservation. This volume, an up-to-date survey of optical sensors and optical microsystems, aims at combining a tutorial foundation with analysis of current research in this area, and an extensive coverage of both technology and applications.
Real-time simulations of the behaviour of a rail vehicle require realistic solutions of the wheel-rail contact problem which can work in a real-time mode. Examples of such solutions for the online mode have been well known and are implemented within standard and commercial tools for the simulation codes for rail vehicle dynamics. This book is the result of the research activities carried out by the Railway Technology Lab of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. This book presents work on the project for the development of a real-time wheel-rail contact model and provides the simulation results obtained with dSpace real-time hardware. Besides this, the implementation of the contact model for the development of a real-time model for the complex mechatronic system of a scaled test rig is presented in this book and may be useful for the further validation of the real-time contact model with experiments on a full scale test rig.
The book describes first the principle photon generation processes from nuclear reactions, electron motion and from discrete quantum transitions. It then focuses on the use of photons in various selected fields of modern natural and life sciences. It bridges disciplines such as physics, chemistry, earth- and materials science, proteomics, information technology, photoelectrochemistry, photosynthesis and spintronics. Advanced light sources and their use in natural and life sciences are emphasized and the effects related to the quantum nature of photons (quantum computing, teleportation) are described. The content encompasses among many other examples the role of photons on the origin of life and on homochirality in biology, femtosecond laser slicing, photothermal cancer therapy, the use of gamma rays in materials science, photoelectrochemical surface conditioning, quantum information aspects and photo-spintronics. The book is written for scientists and graduate students from all related disciplines who are interested in the science beyond their immediate research field. It is meant to encourage interdisciplinary research and development in an age where nanoscience results in a convergence of formerly more disparate science.
Precision Nanometrology describes the new field of precision nanometrology, which plays an important part in nanoscale manufacturing of semiconductors, optical elements, precision parts and similar items. It pays particular attention to the measurement of surface forms of precision workpieces and to stage motions of precision machines. The first half of the book is dedicated to the description of optical sensors for the measurement of angle and displacement, which are fundamental quantities for precision nanometrology. The second half presents a number of scanning-type measuring systems for surface forms and stage motions. The systems discussed include: * error separation algorithms and systems for measurement of straightness and roundness, * the measurement of micro-aspherics, * systems based on scanning probe microscopy, and * scanning image-sensor systems. Precision Nanometrology presents the fundamental and practical technologies of precision nanometrology with a helpful selection of algorithms, instruments and experimental data. It will be beneficial for researchers, engineers and postgraduate students involved in precision engineering, nanotechnology and manufacturing.
This book provides a powerful source to develop new, rapid and highly efficient materials for the application in various fields of oil and gas. It focuses on the synthesis, characterization and applications of various Nanomaterials, presenting the state-of-the-art in developments and innovations in nanocomposites. This book provides the complete practical and theoretical information about the synthesis of nanoparticles with potential use in the field of oil and gas.
This book presents selected peer-reviewed contributions from the 2019 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2019 (Hanoi, Vietnam, 7-10 November, 2019), divided into four scientific themes: processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystals, materials and composites with special properties. It presents nanotechnology approaches, modern environmentally friendly techniques and physical-chemical and mechanical studies of the structural-sensitive and physical-mechanical properties of materials. The obtained results are based on new achievements in material sciences and computational approaches, methods and algorithms (in particular, finite-element and finite-difference modeling) applied to the solution of different technological, mechanical and physical problems. The obtained results have a significant interest for theory, modeling and test of advanced materials. Other results are devoted to promising devices demonstrating high accuracy, longevity and new opportunities to work effectively under critical temperatures and high pressures, in aggressive media, etc. These devices demonstrate improved comparative characteristics, caused by developed materials and composites, allowing investigation of physio-mechanical processes and phenomena based on scientific and technological progress.
Without sensors most electronic applications would not
exist-sensors perform a vital function, namely providing an
interface to the real world. Hall effect sensors, based on a
magnetic phenomena, are one of the most commonly used sensing
technologies today. In the 1970s it became possible to build Hall
effect sensors on integrated circuits with onboard signal
processing circuitry, vastly reducing the cost and enabling
widespread practical use. One of the first major applications was
in computer keyboards, replacing mechanical contacts. Hundreds of
millions of these devices are now manufactured each year for use in
a great variety of applications, including automobiles, computers,
industrial control systems, cell phones, and many others.
Graphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.
Although world-class firms like GE and Motorola have relied on Six Sigma to build their performance cultures, these processes are all too often left out of human resources (HR) functions. This lack of Six Sigma principles is even more surprising because preventing errors and improving productivity are so critical to the people management processes of hiring, retention, appraisal, and development.From the history and evolution of the Total Quality movement to initiatives for introducing a Six Sigma continuous process improvement strategy in your HR department, Achieving HR Excellence through Six Sigma introduces a new way to envision your role within the organization. It explains how this powerful methodology works and supplies a roadmap to help you find and eliminate waste in your HR processes.Describing exactly what HR excellence means, the book outlines dozens of proven approaches as well as a hierarchy of the exact steps required to achieve it. It illustrates the Six Sigma methodology from the creation of a project to its successful completion. At each stage, it describes the specific tools currently available and provides examples of organizations that have used Six Sigma within HR to improve their organizations.The text presents proven approaches that can help you solve and even eliminate people management problems altogether. Filled with real-world examples, it demonstrates how to implement six sigma into the transformational side of your organization. It also includes a listing of additional resources to help you along your Six Sigma journey.Explaining how to build a new business model for your HR organization, the book supplies the new perspective and broad view you will need to discover and recommend game-changing alternatives to traditional HR approaches in your organization.
Regular Nanofabrics in Emerging Technologies gives a deep insight into both fabrication and design aspects of emerging semiconductor technologies, that represent potential candidates for the post-CMOS era. Its approach is unique, across different fields, and it offers a synergetic view for a public of different communities ranging from technologists, to circuit designers, and computer scientists. The book presents two technologies as potential candidates for future semiconductor devices and systems and it shows how fabrication issues can be addressed at the design level and vice versa. The reader either for academic or research purposes will find novel material that is explained carefully for both experts and non-initiated readers. Regular Nanofabrics in Emerging Technologies is a survey of post-CMOS technologies. It explains processing, circuit and system level design for people with various backgrounds.
In recent years, with the advent of ?ne line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum con?nement in one, two and three dimensions (such as inversion layers, ultrathin ?lms, nipi's, quantum well superlattices, quantum wires, quantum wire superlattices, and quantum dots together with quantum con?ned structures aided by various other ?elds) have attracted much attention, not only for their potential in uncovering new phenomena in nanoscience, but also for their interesting applications in the realm of quantum e?ect devices. In ultrathin ?lms, due to the reduction of symmetry in the wave-vector space, the motion of the carriers in the direction normal to the ?lm becomes quantized leading to the quantum size e?ect. Such systems ?nd extensive applications in quantum well lasers, ?eld e?ect transistors, high speed digital networks and also in other low dimensional systems. In quantum wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed. The transport properties of charge carriers in quantum wires, which may be studied by utilizing the similarities with optical and microwave waveguides, are currently being investigated. Knowledge regarding these quantized structures may be gained from original research contributions in scienti?c journals, proceedings of international conferences and various - view articles.
Intelligent technical systems, which combine mechanical, electrical and software engineering with methods from control engineering and advanced mathematics, go far beyond the state of the art in mechatronics and open up fascinating perspectives. Among these systems are so-called self-optimizing systems, which are able to adapt their behavior autonomously and flexibly to changing operating conditions. The Collaborative Research Center 614 "Self-optimizing concepts and structures in mechanical engineering" pursued the long-term aim to enable others to develop dependable self-optimizing systems. Assuring their dependability poses new challenges. However, self-optimization also offers the possibility to adapt the system's behavior to improve dependability during operation. The aim of this book is to provide methods and techniques to master the challenges and to exploit the possibilities given by self-optimization. The reader will be able to develop self-optimizing systems that fulfill and surpass today s dependability requirements easily. This book is directed to researchers and practitioners alike. It gives a brief introduction to the holistic development approach for self-optimizing mechatronic systems and the steps required to assure a dependable product design starting with the very early conceptual design phase. A guideline to select suitable methods for each step and the methods themselves are included. Each method is individually introduced, many examples and full references are given. "
This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability. A new method is presented to control a circuit's temperature dependence by individually tuning pull-up and pull-down networks to their temperature-insensitive operating points. This method extends the range of supply voltages that can be made temperature-insensitive, achieving insensitivity at nominal voltage for the first time.
This thesis transports you to a wonderful and fascinating small-scale world and tells you the origin of several new phenomena. The investigative tool is the improved discrete dislocation-based multi-scale approaches, bridging the continuum modeling and atomistic simulation. Mechanism-based theoretical models are put forward to conveniently predict the mechanical responses and defect evolution. The findings presented in this thesis yield valuable new guidelines for microdevice design, reliability analysis and defect tuning.
Hard machining is a recent technology that can be defined as a direct machining operation of workpieces that have hardness values typically in the 45-70HRc range using tools with geometrically-defined cutting edges. This operation always presents the challenge of selecting a cutting tool insert that facilitates an extended tool life and high-precision machining of the component. Hard machining presents several advantages when compared with the traditional methodology based on finish grinding operations after heat treatment of workpieces. This technology also offers a great contribution to sustainable manufacturing. Hard materials comprise hardened steels, high-speed steels, heat-treatable steels, tool steels, bearing steels and chilled/white cast irons. Inconnel, Hastelloy, cobalt alloys for biomedical applications and other special materials are also classified as hard materials. These materials are in constant use by the automotive industry for bearing production and for the machining of dies and moulds as well as other components for advanced industries. Machining of Hard Materials aims to provide the fundamentals and recent advances in the study of hard machining of materials. All chapters are written by international experts in this important field of research. Chapter 1 defines machining of hard materials and its application in industry. Chapter 2 is dedicated to advanced cutting tools used for the machining of hard materials. Chapter 3 describes the mechanics of the cutting and chip formation. Chapter 4 contains information on surface integrity. Chapter 5 is dedicated to finite element modelling and simulation. Finally, Chapter 6 is dedicated to computational methods and optimization. Machining of Hard Materials can serve as a useful reference for academics; manufacturing and materials researchers; manufacturing and mechanical engineers; and professionals in machining and related industries.
Nanotechnology, as shortly described as the study of manipulating matter on an atomic and molecular scale, is one of the most dynamic and promising industries, receiving a great deal of attention from researchers, business leaders, investors, and policymakers around the world. In Making It to the Forefront, Nesli Aydogan-Duda has assembled a distinguished group of authors to analyze the particular challenges and opportunities of nanotechnology emergence and management in the developing world. In so doing, they address the issues from several angles, ranging from cultural issues to capital markets, industrial clusters to government policy and legal structure. Drawing from in-depth research and case studies in Turkey, Latin America, India, China, and Iran, and a comparison with the development of the industry in the United states, the authors present a cross-cultural approach, with particular emphasis on the strategic nature of the nanotechnology industry for economic development, consumer welfare, and homeland security. Among the topics they consider are the importance of knowledge transfer from universities to the market and, more generally, the interface between science and its commercialization-and the institutional infrastructure that is necessary to maximize the potential of science and technology. In doing so, the authors provide unprecedented theoretical and empirical contributions to the study of nanotechnology, and, more generally, insight into the complex business, political, and cultural environment that must be established in order for such an industry to thrive in the context of a developing country.
Today, biosensors are broadly applied in research, clinical diagnosis and monitoring, as well as in pharmaceutical, environmental or food analysis. In this work, the author presents the essentials that advanced students and researchers need to know in order to make full use of this technology. This includes a description of biochemical recognition elements, such as enzymes, antibodies, aptamers or even whole cells. Various signal transducers such as electrochemical and optical transducers, luminescence devices and advanced techniques such as quartz crystal microbalances and MEMS systems are covered as well. Current applications are introduced through various case studies, rounded out by a forward-looking chapter on the prospects for biosensor development offered by nanotechnology, lab-on-a-chip, and biomimetic systems.
This book analyzes the thermal characteristics of power electronic devices (PEDs) with a focus on those used in wind and solar energy systems. The authors focus on the devices used in such applications, for example boost converters and inverters under different operating conditions. The book explains in detail finite element modeling techniques, setting up measuring systems, data analysis, and PEDs' lifetime calculations. It is appropriate reading for graduate students and researchers who focus on the design and reliability of power electronic devices. |
![]() ![]() You may like...
Romanticism and Time - Literary…
Sophie Laniel-Musitelli, Celine Sabiron
Hardcover
R1,457
Discovery Miles 14 570
British Playwrights, 1880-1956 - A…
William W. Demastes, Katherine Kelly
Hardcover
R2,639
Discovery Miles 26 390
Geochemical Modelling of Igneous…
Vojtech Janousek, Jean-Francois Moyen, …
Hardcover
R4,350
Discovery Miles 43 500
|