![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies
The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included. As additional guidance, today's manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian's ceremony of 'Weighing of the Heart', the Greek fate balance, the Roman Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the slide-archives of the late Richard Vieweg (1896-1972) (former President of the Physikalisch-Technische Bundesanstalt, Braunschweig, Germany), of the late Hans R. Jenemann (1920-1966) (former head of the Analytical Laboratory of Schott & Gen., Mainz, Germany) and of his wife Irene (1933-2008) and of Erich Robens.
This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.
With a bias for action, this book offers valuable insight into the origins of the much-celebrated Danish design tradition and how it can be employed to create design solutions to address today's environmental crisis using the planetary boundaries as positive creative constraints. Danish design has long been revered for its high-quality aesthetics, materials and craftmanship, encouraging sustainability without compromise. This book explores the lessons to be learnt from Scandinavian design ideals, introduces the philosophy and principles of circular economy, and showcases the potential power of combining circular economy and design in helping to mitigate the effects of climate change. It presents a range of case study examples across multiple sectors and includes interviews with Danish designers in architecture, furniture, fashion, digital design and industrial design, providing unique insights from some of the world's leading contemporary designers. Bridging theory and real-world insights and experiences, the book builds on the framework of the 4R’s The Circular Way: Reduce, Reuse, Recycle and Replace to encourage innovation through the replacement of environmentally damaging materials and business models. A must-read for product designers, industrial designers, consultants, business developers, sustainability professionals and students interested in learning how to design and implement circular, sustainable models into practice.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.
This book provides a comprehensive and systematic overview of the latest advances in nanomaterials for proteomics, both theoretical and practical. Consisting of seven chapters, it first covers the synthesis methods, characterization, principles, and performance of functional nanomaterials in various branches of proteomics in detail. This is followed by the applications of nanomaterials for the separation and analysis of various proteins and peptides. Given its scope, the book appeals to a broad readership, including those active in proteomics and materials science; it can also serve as a reference book for students majoring in proteomics analysis.
Metal protectin, including both metal treatments and coating systems. affords mutual protection for both can and contents. this book is the first reference to meld the knowledge of chemical companies and canmaking companies, covering materials and processes used in both protective and decorative aspects of metal packaging. Topics include basic substrates (aluminum and steel), demands of the markets served, basic metal-forming processes, and the specific decorative and protctive needs of different packaging types, with emphasis give to the technologies most likely to be used, such as ultraviolet curing. This practical reference gives readers a backround and familiarity with terminology and technology and gives insight into why certain technologies are used over others.
Nanoelectronics, as a true successor of microelectronics, is certainly a major technology boomer in the 21st century. This has been shown by its several applications and also by its enormous potential to influence all areas of electronics, computers, information technology, aerospace defense, and consumer goods. Although the current semiconductor technology is projected to reach its physical limit in about a decade, nanoscience and nanotechnology promise breakthroughs for the future. The present books provides an in-depth review of the latest advances in the technology of nanoelectronic devices and their developments over the past decades. Moreover, it introduces new concepts for the realization of future nanoelectronic devices. The main focus of the book is on three fundamental branches of semiconductor products or applications: logic, memory, and RF and communication. By pointing out to the key technical challenges, important aspects and characteristics of various designs are used to illustrate mechanisms that overcome the technical barriers. Furthermore, by comparing advantages and disadvantages of different designs, the most promising solutions are indicated for each application.
Progress in optical fiber sensors The field of optical fiber sensor technology is one that continues to expand and develop at a rate that could barely have been predicted a few years ago. The wealth of publications appearing in the technical literature and the burgeoning number of papers presented at the now well-established series of national and international conferences, which are attended by a wide selection of technically qualified optoelectronics professionals, gives a clear indication of both the range and scale of the devices and applications now seen in the subject. Such a rapid expansion makes it very difficult for the scientist and engineer, under pressure to be both informed and effective for an employer, to attend all these meetings, selectively read the appropriate literature and be able quickly to gain the knowledge in those specific areas which will give the best advantage for the work in hand. To that end, this volume has been planned and carefully designed to provide an essential overview, and detailed specific information, on those novel and exciting aspects of optical fiber sensor technology that have recently emerged, with particular focus on the devices and the exciting applications of this part of optoelectronic technology in the vast international measurement and instrumentation area.
This book provides a comprehensive description of microsensors for mechanical quantities (flow, pressure, force, inertia) fabricated by silicon micromachining. Since the design of such sensors requires interdisciplinary teamwork, the presentation is made accessible to engineers trained in electrical and mechanical engineering, physics and chemistry. The reader is guided through the micromachining fabrication process. A chapter on microsensor packaging completes the discussion of technological problems. The description of the basic physics required for sensor design includes the mechanics of deformation and the piezoresistive transduction to electrical signals. There is also a comprehensive discussion of resonant sensors, the hydrodynamics and heat transfer relevant for flow sensors, and, finally, electronic interfacing and readout circuitry. Numerous up-to-date case studies are presented, together with the working, fabrication and design of the sensors.
This volume, which brings together research presented at the IUTAM Symposium Intelligent Multibody Systems - Dynamics, Control, Simulation, held at Sozopol, Bulgaria, September 11-15, 2017, focuses on preliminary virtual simulation of the dynamics of motion, and analysis of loading of the devices and of their behaviour caused by the working conditions and natural phenomena. This requires up-to-date methods for dynamics analysis and simulation, novel methods for numerical solution of ODE and DAE, real-time simulation, passive, semi-passive and active control algorithms. Applied examples are mechatronic (intelligent) multibody systems, autonomous vehicles, space structures, structures exposed to external and seismic excitations, large flexible structures and wind generators, robots and bio-robots. The book covers the following subjects: -Novel methods in multibody system dynamics; -Real-time dynamics; -Dynamic models of passive and active mechatronic devices; -Vehicle dynamics and control; -Structural dynamics; -Deflection and vibration suppression; -Numerical integration of ODE and DAE for large scale and stiff multibody systems; -Model reduction of large-scale flexible systems. The book will be of interest for scientists and academicians, PhD students and engineers at universities and scientific institutes.
This book covers new materials used as analytical devices for increasing the interactions between the development of new analytical devices and materials science. The authors describe how different types of materials such as polymers, self-assembled layers, phthalocyanines, and nanomaterials can further enhance sensitivity and promote selectivity between analytes for different applications. They explain how continuing research and discussion into materials science for chemical sensing is stimulating the search for different strategies and technologies that extract information for these chemical sensors in order to obtain a chemical fingerprint of samples.
This book presents essential algorithms for the image processing pipeline of photo-printers and accompanying software tools, offering an exposition of multiple image enhancement algorithms, smart aspect-ratio changing techniques for borderless printing and approaches for non-standard printing modes. All the techniques described are content-adaptive and operate in an automatic mode thanks to machine learning reasoning or ingenious heuristics. The first part includes algorithms, for example, red-eye correction and compression artefacts reduction, that can be applied in any photo processing application, while the second part focuses specifically on printing devices, e.g. eco-friendly and anaglyph printing. The majority of the techniques presented have a low computational complexity because they were initially designed for integration in system-on-chip. The book reflects the authors' practical experience in algorithm development for industrial R&D.
Part I introduces the basic "Principles and Methods of Force Measurement" according to a classification into a dozen of force transducerstypes: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the "(Strain Gauge) Force Transducers Components", evolving from the classical force transducer to the digital / intelligent one, with the incorporation of three subsystems (sensors, electromechanics and informatics). The elastic element (EE) is the "heart" of the force transducer and basically determines its performance. A 12-type elastic element classification is proposed (stretched / compressed column or tube, bending beam, bending and/or torsion shaft, middle bent bar with fixed ends, shear beam, bending ring, yoke or frame, diaphragm, axial-stressed torus, axisymmetrical and voluminous EE), with emphasis on the optimum place of the strain gauges. The main properties of the associated Wheatstone bridge, best suited for the parametrical transducers, are examined, together with the appropriate electronic circuits for SGFTs. The handbook fills a gap in the field of Force Measurement, both experts and newcomers, no matter of their particular interest, finding a lot of useful and valuable subjects in the area of Force Transducers; in fact, it is the first specialized monograph in this inter- and multidisciplinary field.
Proceedings of the 22nd Course of the International School of Quantum Electronics, held 27 November-2 December 1997, in Erice, Italy. In recent years, fiber optical sensors and optical microsystems have assumed a significant role in sensing and measurement of many kinds. These optical techniques are utilised in a wide range of fields, including biomedicine, environmental sensing, mechanical and industrial measurement, and art preservation. This volume, an up-to-date survey of optical sensors and optical microsystems, aims at combining a tutorial foundation with analysis of current research in this area, and an extensive coverage of both technology and applications.
Real-time simulations of the behaviour of a rail vehicle require realistic solutions of the wheel-rail contact problem which can work in a real-time mode. Examples of such solutions for the online mode have been well known and are implemented within standard and commercial tools for the simulation codes for rail vehicle dynamics. This book is the result of the research activities carried out by the Railway Technology Lab of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. This book presents work on the project for the development of a real-time wheel-rail contact model and provides the simulation results obtained with dSpace real-time hardware. Besides this, the implementation of the contact model for the development of a real-time model for the complex mechatronic system of a scaled test rig is presented in this book and may be useful for the further validation of the real-time contact model with experiments on a full scale test rig.
The book describes first the principle photon generation processes from nuclear reactions, electron motion and from discrete quantum transitions. It then focuses on the use of photons in various selected fields of modern natural and life sciences. It bridges disciplines such as physics, chemistry, earth- and materials science, proteomics, information technology, photoelectrochemistry, photosynthesis and spintronics. Advanced light sources and their use in natural and life sciences are emphasized and the effects related to the quantum nature of photons (quantum computing, teleportation) are described. The content encompasses among many other examples the role of photons on the origin of life and on homochirality in biology, femtosecond laser slicing, photothermal cancer therapy, the use of gamma rays in materials science, photoelectrochemical surface conditioning, quantum information aspects and photo-spintronics. The book is written for scientists and graduate students from all related disciplines who are interested in the science beyond their immediate research field. It is meant to encourage interdisciplinary research and development in an age where nanoscience results in a convergence of formerly more disparate science.
Precision Nanometrology describes the new field of precision nanometrology, which plays an important part in nanoscale manufacturing of semiconductors, optical elements, precision parts and similar items. It pays particular attention to the measurement of surface forms of precision workpieces and to stage motions of precision machines. The first half of the book is dedicated to the description of optical sensors for the measurement of angle and displacement, which are fundamental quantities for precision nanometrology. The second half presents a number of scanning-type measuring systems for surface forms and stage motions. The systems discussed include: * error separation algorithms and systems for measurement of straightness and roundness, * the measurement of micro-aspherics, * systems based on scanning probe microscopy, and * scanning image-sensor systems. Precision Nanometrology presents the fundamental and practical technologies of precision nanometrology with a helpful selection of algorithms, instruments and experimental data. It will be beneficial for researchers, engineers and postgraduate students involved in precision engineering, nanotechnology and manufacturing.
This book provides a powerful source to develop new, rapid and highly efficient materials for the application in various fields of oil and gas. It focuses on the synthesis, characterization and applications of various Nanomaterials, presenting the state-of-the-art in developments and innovations in nanocomposites. This book provides the complete practical and theoretical information about the synthesis of nanoparticles with potential use in the field of oil and gas.
This book presents selected peer-reviewed contributions from the 2019 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2019 (Hanoi, Vietnam, 7-10 November, 2019), divided into four scientific themes: processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystals, materials and composites with special properties. It presents nanotechnology approaches, modern environmentally friendly techniques and physical-chemical and mechanical studies of the structural-sensitive and physical-mechanical properties of materials. The obtained results are based on new achievements in material sciences and computational approaches, methods and algorithms (in particular, finite-element and finite-difference modeling) applied to the solution of different technological, mechanical and physical problems. The obtained results have a significant interest for theory, modeling and test of advanced materials. Other results are devoted to promising devices demonstrating high accuracy, longevity and new opportunities to work effectively under critical temperatures and high pressures, in aggressive media, etc. These devices demonstrate improved comparative characteristics, caused by developed materials and composites, allowing investigation of physio-mechanical processes and phenomena based on scientific and technological progress.
Graphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.
Over a decade John Glanville and Bill Wolmuth undertook an important horological project for the British Museum. This involved establishing a representative collection, for the Museum, of twentieth-century domestic mechanical clocks made in England and Wales using industrialized manufacturing methods. This remarkable book is the culmination of their efforts. Wide-ranging in its coverage, it will be a key reference tool for horologists, horoligical students, collectors, and antiques and clock dealers. It provides a comprehensive history of each significant manufacturer, including the principal people involved and covers the various mechanical clock movements that were produced. Previously unpublished research about the manufacturers, the clocks they made and the dates when they were manufactured is presented. Finally, this book informs readers how they can identify and date almost all of the clocks they are likely to encounter.
Although world-class firms like GE and Motorola have relied on Six Sigma to build their performance cultures, these processes are all too often left out of human resources (HR) functions. This lack of Six Sigma principles is even more surprising because preventing errors and improving productivity are so critical to the people management processes of hiring, retention, appraisal, and development.From the history and evolution of the Total Quality movement to initiatives for introducing a Six Sigma continuous process improvement strategy in your HR department, Achieving HR Excellence through Six Sigma introduces a new way to envision your role within the organization. It explains how this powerful methodology works and supplies a roadmap to help you find and eliminate waste in your HR processes.Describing exactly what HR excellence means, the book outlines dozens of proven approaches as well as a hierarchy of the exact steps required to achieve it. It illustrates the Six Sigma methodology from the creation of a project to its successful completion. At each stage, it describes the specific tools currently available and provides examples of organizations that have used Six Sigma within HR to improve their organizations.The text presents proven approaches that can help you solve and even eliminate people management problems altogether. Filled with real-world examples, it demonstrates how to implement six sigma into the transformational side of your organization. It also includes a listing of additional resources to help you along your Six Sigma journey.Explaining how to build a new business model for your HR organization, the book supplies the new perspective and broad view you will need to discover and recommend game-changing alternatives to traditional HR approaches in your organization.
Regular Nanofabrics in Emerging Technologies gives a deep insight into both fabrication and design aspects of emerging semiconductor technologies, that represent potential candidates for the post-CMOS era. Its approach is unique, across different fields, and it offers a synergetic view for a public of different communities ranging from technologists, to circuit designers, and computer scientists. The book presents two technologies as potential candidates for future semiconductor devices and systems and it shows how fabrication issues can be addressed at the design level and vice versa. The reader either for academic or research purposes will find novel material that is explained carefully for both experts and non-initiated readers. Regular Nanofabrics in Emerging Technologies is a survey of post-CMOS technologies. It explains processing, circuit and system level design for people with various backgrounds.
In recent years, with the advent of ?ne line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum con?nement in one, two and three dimensions (such as inversion layers, ultrathin ?lms, nipi's, quantum well superlattices, quantum wires, quantum wire superlattices, and quantum dots together with quantum con?ned structures aided by various other ?elds) have attracted much attention, not only for their potential in uncovering new phenomena in nanoscience, but also for their interesting applications in the realm of quantum e?ect devices. In ultrathin ?lms, due to the reduction of symmetry in the wave-vector space, the motion of the carriers in the direction normal to the ?lm becomes quantized leading to the quantum size e?ect. Such systems ?nd extensive applications in quantum well lasers, ?eld e?ect transistors, high speed digital networks and also in other low dimensional systems. In quantum wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed. The transport properties of charge carriers in quantum wires, which may be studied by utilizing the similarities with optical and microwave waveguides, are currently being investigated. Knowledge regarding these quantized structures may be gained from original research contributions in scienti?c journals, proceedings of international conferences and various - view articles.
Intelligent technical systems, which combine mechanical, electrical and software engineering with methods from control engineering and advanced mathematics, go far beyond the state of the art in mechatronics and open up fascinating perspectives. Among these systems are so-called self-optimizing systems, which are able to adapt their behavior autonomously and flexibly to changing operating conditions. The Collaborative Research Center 614 "Self-optimizing concepts and structures in mechanical engineering" pursued the long-term aim to enable others to develop dependable self-optimizing systems. Assuring their dependability poses new challenges. However, self-optimization also offers the possibility to adapt the system's behavior to improve dependability during operation. The aim of this book is to provide methods and techniques to master the challenges and to exploit the possibilities given by self-optimization. The reader will be able to develop self-optimizing systems that fulfill and surpass today s dependability requirements easily. This book is directed to researchers and practitioners alike. It gives a brief introduction to the holistic development approach for self-optimizing mechatronic systems and the steps required to assure a dependable product design starting with the very early conceptual design phase. A guideline to select suitable methods for each step and the methods themselves are included. Each method is individually introduced, many examples and full references are given. " |
![]() ![]() You may like...
Game Theory and Business Applications
Kalyan Chatterjee, William Samuelson
Hardcover
R4,414
Discovery Miles 44 140
Algorithmic Algebraic Combinatorics and…
Mikhail Klin, Gareth A. Jones, …
Hardcover
R5,245
Discovery Miles 52 450
Singularities, Mirror Symmetry, and the…
Tyler J. Jarvis, Nathan Priddis
Paperback
R3,121
Discovery Miles 31 210
Foundations and Methods of Stochastic…
Barry L. Nelson, Linda Pei
Hardcover
R3,220
Discovery Miles 32 200
Modeling and Simulation of Reactive…
de A. L. Bortoli, Greice Andreis, …
Paperback
R1,829
Discovery Miles 18 290
|