![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies
Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology is the first book solely dedicated to electrochemical micromachining (EMM). It begins with fundamentals, techniques, processes, and conditions, continuing with in-depth discussions of mechanisms of material removal, including an empirical model on the material removal rate for EMM (supported by experimental validation). The book moves next to construction-related features of EMM setup suitable for industrial micromachining applications, varying types of EMM, and the latest developments in the improvement of EMM setup. Further, it covers power supply, roll of electrolyte, and other major factors influencing EMM processes, and reports research findings concerning the improvement of machining accuracy and efficiency. Finally, the book devotes a chapter to the design and development of micro-tools, one of the most vital components in EMM.
Efficiently and profitably delivering quality flexible packaging to the marketplace requires designing and manufacturing products that are both "fit-to-use" and "fit-to-make." The engineering function in a flexible packaging enterprise must attend to these dual design challenges. "Flexible Packaging" discusses the basic processes used to manufacture flexible packaging products, including rotogravure printing, flexographic printing, adhesive lamination, extrusion lamination/coating; and finishing/slitting. These processes are then related to the machines used to practice them, emphasising the basics of machines control systems, and options to minimize wasted time and materials between production jobs. Raw materials are also considered, including the three basic forms: "Rollstock" (paper, foil, plastic films); "Resin"; and "Wets" (inks, varnishes, primers). Guidance is provided on both material selection, and on adding value through enhancement or modification of the materials physical features. A measures section covers both primary material features - such
as tensile, elongation, modulus and elastic and plastic regions -
and secondary quality characteristics such as seal and bond
strengths, coefficient of friction, oxygen barrier and moisture
vapour barrier.
The advancement of modern technology has allowed for impressive developments in manufacturing processes. Out of these developments, 3D printing has emerged as a new method. 3D Printing: Breakthroughs in Research and Practice is a comprehensive reference source for the latest research and advances on 3D printing processes, technologies, and methods. Highlighting emerging perspectives on manufacturing and industrial applications, this book is ideally designed for professionals, practitioners, students, and researchers interested in the latest developments and uses of 3D printing.
Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.
Hermeticity of Electronic Packages is a book about the integrity of sealed packages to resist foreign gases and liquids penetrating the seal or an opening (crack) in the packageuespecially critical to the reliability and longevity of electronics. The author explains how to predict the reliability and the longevity of the packages based on leak rate measurements and the assumptions of impurities. Non-specialists in particular will benefit from the author's long involvement in the technology. Hermeticity is a subject that demands practical experience, and solving one problem does not necessarily give one the background to solve another. Thus, the book provides a ready reference to help deal with day to day issues as they arise. The book gathers in a single volume a great many issues previously available only in journalsuor only in the experience of working engineers. How to define the ""goodness"" of a seal? How is that seal measured? How does the integrity of the seal affect circuit reliability? What is the significance of the measured integrity of the seal? What is the relationship of Residual Gas Analysis and the seal integrity? The handbook answers these questions and more, providing an analysis of nearly 100 problems representative of the wide variety of challenges that actually occur in industry today.
A Savile Row suite is universally understood to be the best one can buy. There is no other street in the world that has come such a byword for excellence. One tailor - Henry Poole - is responsible for this. Carefully researched and beautifully illustrated this book chronicles the evolution of Savile Row and the emergence of Henry Poole as the premier tailor with a fascinating list of clients. Throughout the world 'a Savile Row suit' is universally understood to be the very best one can possibly buy. There can be few other streets in the world that have become such a byword for excellence. One tailor more than any other is responsible for this international reputation - Henry Poole and Company. Yet how did this prominence come about? Henry Poole - The Making of a Legend is more than just the story of a company's rise to prominence. Carefully researched from the company's extensive archives, amongst many other sources, this book will fascinate the reader on a number of levels. It chronicles the evolution of Savile Row as well as encompassing a social record of Britain's international emergence. At the same time it documents how fashions have changed and progressed. The pages of Henry Poole - The Making of a Legend reflect almost two centuries of the ebb and flow of corporate survival with financial successes followed by perilous trading and near bankruptcy. Behind the discreet glamour of the bespoke tailoring trade there were dark sides; the the Row - There's no such thing as bad publicity - Goodbye to Everett Street - Royal Court and the Racecourse - Into the Row - The Life of a Gentleman - Happiness, Pride and Disater - The Burial of the Dead - Wampum and War Paint - The End of Civilisation - Poole has spoken - 1939 to 1955 - 1956 to 1970 - Return to the Row - 1986 to Present
This book provides a comprehensive overview of how to strategically manage the movement and storage of products or materials from any point in the manufacturing process to customer fulfillment. Topics covered include important tools for strategic decision making, transport, packaging, warehousing, retailing, customer services and future trends.
Man-made or industrial processes, localised or geographically distributed, need be automated in order to ensure they produce quality, consistent, and cost-effective goods or services. Automation systems for these processes broadly consist of instrumentation, control, human interface, and communication subsystems. This book introduces the basics of philosophy, technology, terminology, and practices of modern automation systems with simple illustrations and examples.
3D printed electronics have captured much attention in recent years, owing to their success in allowing on-demand fabrication of highly-customisable electronics on a wide variety of substrates and conformal surfaces. This textbook helps readers understand and gain valuable insights into 3D printed electronics. It does not require readers to have any prior knowledge on the subject.3D Printing and Additive Manufacturing of Electronics: Principles and Applications provides a comprehensive overview of the recent progress and discusses the fundamentals of the 3D printed electronics technologies, their respective advantages, shortcomings and potential applications. The book covers conventional contact printing techniques for printed electronics, 3D electronics printing techniques, materials and inks inks for 3D-printed electronics, substrates and processing for 3D-printed electronics, sintering techniques for metallic nanoparticle inks, designs and simulations, applications of 3D-printed electronics, and future trends. The book includes several related problems for the reader to test his or her understanding of the topics.This book is a good guide for anyone who is interested in the 3D printing of electronics. The book is also an effective textbook for undergraduate and graduate courses that aim to arm their students with a thorough understanding of the fundamentals of 3D printed electronics.Related Link(s)
3D printed electronics have captured much attention in recent years, owing to their success in allowing on-demand fabrication of highly-customisable electronics on a wide variety of substrates and conformal surfaces. This textbook helps readers understand and gain valuable insights into 3D printed electronics. It does not require readers to have any prior knowledge on the subject.3D Printing and Additive Manufacturing of Electronics: Principles and Applications provides a comprehensive overview of the recent progress and discusses the fundamentals of the 3D printed electronics technologies, their respective advantages, shortcomings and potential applications. The book covers conventional contact printing techniques for printed electronics, 3D electronics printing techniques, materials and inks inks for 3D-printed electronics, substrates and processing for 3D-printed electronics, sintering techniques for metallic nanoparticle inks, designs and simulations, applications of 3D-printed electronics, and future trends. The book includes several related problems for the reader to test his or her understanding of the topics.This book is a good guide for anyone who is interested in the 3D printing of electronics. The book is also an effective textbook for undergraduate and graduate courses that aim to arm their students with a thorough understanding of the fundamentals of 3D printed electronics.Related Link(s)
Smart Materials-Based Actuators at the Micro/Nano-Scale: Characterization, Control, and Applications gives a state of the art of emerging techniques to the characterization and control of actuators based on smart materials working at the micro/nano scale. The book aims to characterize some commonly used structures based on piezoelectric and electroactive polymeric actuators and also focuses on various and emerging techniques employed to control them. This book also includes two of the most emerging topics and applications: nanorobotics and cells micro/nano-manipulation.
The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Electronic Nose Technologies and Advances in Machine Olfaction is an academic scholarly resource that examines the emerging applications of odor-sensing devices as well as a better understanding of the designing process with the aid of neural networks and various other technologies. Featuring coverage on a broad range of topics including food spoilage detection, chemical sensing, and olfactometer, this book is a vital resource for engineers, academicians, researchers, students, and practitioners seeking current research on the advancements in applications of odor-sensing devices.
Any time objects and their (self-)organization are to be put into use, their models and methods of thinking as well as their designing and manufacturing need to be reinvented.4D printing is a future technology that is capable of bringing 3D objects to life. This ability, which gives objects the power to change shape or properties over time through energy stimulation from active materials and additive manufacturing, makes it possible to envisage technological breakthroughs while challenging the relationship between people and objects.4D Printing 1 presents the different facets of this technology, providing an objective, critical and even disruptive viewpoint to enable its existence and development, and to stimulate the creative drive that industry, society and humanity need in the perpetual quest for evolution and transformation.
This book provides a comprehensive survey of the technology of flash lamp annealing (FLA) for thermal processing of semiconductors. It gives a detailed introduction to the FLA technology and its physical background. Advantages, drawbacks and process issues are addressed in detail and allow the reader to properly plan and perform their own thermal processing. Moreover, this books gives a broad overview of the applications of flash lamp annealing, including a comprehensive literature survey. Several case studies of simulated temperature profiles in real material systems give the reader the necessary insight into the underlying physics and simulations. This book is a valuable reference work for both novice and advanced users.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book highlights numerical models as powerful tools for the optimal design of Micro-Electro-Mechanical Systems (MEMS). Most MEMS experts have a background in electronics, where circuit models or behavioral models (i.e. lumped-parameter models) of devices are preferred to field models. This is certainly convenient in terms of preliminary design, e.g. in the prototyping stage. However, design optimization should also take into account fine-sizing effects on device behavior and therefore be based on distributed-parameter models, such as finite-element models. The book shows how the combination of automated optimal design and field-based models can produce powerful design toolboxes for MEMS. It especially focuses on illustrating theoretical concepts with practical examples, fostering comprehension through a problem-solving approach. By comparing the results obtained using different methods, readers will learn to identify their respective strengths and weaknesses. In addition, special emphasis is given to evolutionary computing and nature-inspired optimization strategies, the effectiveness of which has already been amply demonstrated. Given its scope, the book provides PhD students, researchers and professionals in the area of computer-aided analysis with a comprehensive, yet concise and practice-oriented guide to MEMS design and optimization. To benefit most from the book, readers should have a basic grasp of electromagnetism, vector analysis and numerical methods.
This book includes selected, peer-reviewed contributions from the 2018 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2018, held in Busan, South Korea, 9-11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena.
Without sensors most electronic applications would not
exist-sensors perform a vital function, namely providing an
interface to the real world. Hall effect sensors, based on a
magnetic phenomena, are one of the most commonly used sensing
technologies today. In the 1970s it became possible to build Hall
effect sensors on integrated circuits with onboard signal
processing circuitry, vastly reducing the cost and enabling
widespread practical use. One of the first major applications was
in computer keyboards, replacing mechanical contacts. Hundreds of
millions of these devices are now manufactured each year for use in
a great variety of applications, including automobiles, computers,
industrial control systems, cell phones, and many others.
This thesis demonstrates a technology that enables pipetting-free high-throughput screening (HTS) on a miniaturized platform, eliminating the need for thousands of one-by-one pipetting and conventional liquid handling systems. This platform enhances accessibility to HTS and enables HTS to be used in small-to-medium scale laboratories. In addition, it allows large-scale combinatorial screening with a small number of valuable cells, such as patients' primary cancer cells. This technique will have a high impact for widespread use of HTS in the era of personalized medicine. In this thesis, the author firstly describes the need and concept of 'partipetting' for pipetting-free HTS platform. It is realized by the one-step pipetting and self-assembly of encoded drug-laden microparticles (DLPs) on the microwells. Next, the technical implementations required for the platform demonstration are described. It includes preparation of encoded DLPs, plastic chip fabrication, and realization of automated system. Lastly, screening of sequential drug combinations using this platform is demonstrated. This shows the potential of the proposed technology for various applications.
This book highlights recent advances in thin-film photonics, particularly as building blocks of metamaterials and metasurfaces. Recent advances in nanophotonics has demonstrated remarkable control over the electromagnetic field by tailoring the optical properties of materials at the subwavelength scale which results in the emergence of metamaterials and metasurfaces. However, most of the proposed platforms require intense lithography which makes them of minor practical relevance. Stacked ultrathin-films of dielectrics, semi-conductors, and metals are introduced as an alternative platform that perform unique or similar functionalities. This book discusses the new era of thin film photonics and its potential applications in perfect and selective light absorption, structural coloring, biosensing, enhanced spontaneous emission, reconfigurable photonic devices and super lensing.
This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development. Provides fundamental knowledge on biomimetic lipid membranes; Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques; Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques; Describes the integration of biomimetic membranes with current top-notch tools and platforms; Examines applications in medicine, pharmaceutical industry, and environmental monitoring.
This book covers the recent developments in the production of micro and nano size products, which cater to the needs of the industry. The processes to produce the miniature sized products with unique characteristics are addressed. Moreover, their application in areas such as micro-engines, micro-heat exchangers, micro-pumps, micro-channels, printing heads and medical implants are also highlighted. The book presents such microsystem-based products as important contributors to a sustainable economy. The recent research in this book focuses on the development of new micro and nano manufacturing platforms while integrating the different technologies to manufacture the micro and nano components in a high throughput and cost effective manner. The chapters contain original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers.
Plant Nanobionics, Volume 2 continues the important discussion of nanotechnology in plants, but focuses with a focus on biosynthesis and toxicity. This book discusses novel approaches to biosynthesis of nanoparticles for the increase of plant production systems, controlled release of agrochemicals and management of plant biotic stress. Green biosynthesis of metallic nanoparticles from bee propolis, artificial photosynthesis and hybrid structures are presented. Although engineered nanoparticles have great potential for solving many agricultural and societal problems, their consequences on the ecosystems and environment must be responsibly considered. This volume aims to contribute to the limited literature on this topic through its comprehensive examination of nanoparticle toxicity on plants, microbes and human health. Environmental risks with recent data are discussed as well as risks associated with the transfer of nanoparticles through the food chain. This volume highlights the study of a mechanistic approach and the study of nanoparticles towards nanobionics. The application of polymeric materials for smart packing in the food industry and agriculture sector as well as the future of nanomaterials in detecting soil microbes for environmental remediation are also included. |
You may like...
|