![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
The book consists of chapters based on selected papers of international conference "Power, Control and Optimization 2012", held in Las Vegas, USA. Readers can find interesting chapters discussing various topics from the field of power control, its distribution and related fields. Book discusses topics like energy consumption impacted by climate, mathematical modeling of the influence of thermal power plant on the aquatic environment, investigation of cost reduction in residential electricity bill using electric vehicle at peak times or allocation and size evaluation of distributed generation using ANN model and others. Chapter authors are to the best of our knowledge the originators or closely related to the originators of presented ideas and its applications. Hence, this book certainly is one of the few books discussing the benefit from intersection of those modern and fruitful scientific fields of research with very tight and deep impact on real life and industry. This book is devoted to the studies of common and related subjects in intensive research fields of power technologies. For these reasons, we believe that this book will be useful for scientists and engineers working in the above-mentioned fields of research and applications.
Presenting an optimal energy distribution strategy for microgrids in a smart grid environment, and featuring a detailed analysis of the mathematical techniques of convex optimization and online algorithms, this book provides readers with essential content on how to achieve multi-objective optimization that takes into consideration power subscribers, energy providers and grid smoothing in microgrids. Featuring detailed theoretical proofs and simulation results that demonstrate and evaluate the correctness and effectiveness of the algorithm, this text explains step-by-step how the problem can be reformulated and solved, and how to achieve the distributed online algorithm on the basis of a centralized offline algorithm. Special attention is paid to how to apply this algorithm in practical cases and the possible future trends of the microgrid and smart grid research and applications. Offering a valuable guide to help researchers and students better understand the new smart grid, this book will also familiarize readers with the concept of the microgrid and its relationship with renewable energy.
The new edition of POWER SYSTEM ANALYSIS AND DESIGN provides students with an introduction to the basic concepts of power systems along with tools to aid them in applying these skills to real world situations. Physical concepts are highlighted while also giving necessary attention to mathematical techniques. Both theory and modeling are developed from simple beginnings so that they can be readily extended to new and complex situations. The authors incorporate new tools and material to aid students with design issues and reflect recent trends in the field.
The book identifies the performance challenges concerning Wireless Sensor Networks (WSN) and Radio Frequency Identification (RFID) and analyzes their impact on the performance of routing protocols. It presents a thorough literature survey to identify the issues affecting routing protocol performance, as well as a mathematical model for calculating the end-to-end delays of the routing protocol ACQUIRE; a comparison of two routing protocols (ACQUIRE and DIRECTED DIFFUSION) is also provided for evaluation purposes. On the basis of the results and literature review, recommendations are made for better selection of protocols regarding the nature of the respective application and related challenges. In addition, this book covers a proposed simulator that integrates both RFID and WSN technologies. Therefore, the manuscript is divided in two major parts: an integrated architecture of smart nodes, and a power-optimized protocol for query and information interchange.
The scope of the book covers most of the aspects as a primer on power electronics starting from a simple diode bridge to a DC-DC convertor using PWM control. The thyristor-bridge and the mechanism of designing a closed loop system are discussed in chapter one, two and three. The concepts are applied in the fourth chapter as a case study for buck converter which uses MOSFETs as switching devices and the closed loop system is elaborated in the fifth chapter. Chapter six is focused on the embedded system basics and the implementation of controls in the digital domain. Chapter seven is a case study of application of an embedded control system for a DC motor. With this book, the reader will find it easy to work on the practical control systems with microcontroller implementation. The core intent of this book is to help gain an accelerated learning path to practical control system engineering and transform control theory to an implementable control system through electronics. Illustrations are provided for most of the examples with fundamental mathematics along with simulations of the systems with their respective equations and stability calculations.
The book is devoted to the spatial characterization of solar cells and PV modules. It is written both as a monograph as well as a succinct guide for the state-of-the-art spatial characterization techniques and approaches. Amongst the approaches discussed are visual imaging, electro- and photo-luminescence imaging, thermography, and light beam induced mapping techniques. Emphasis is given on the luminescence image acquisition and interpretation due to its great potential. Characterization techniques are accompanied by simulation tools. The contents are aimed at a readership of students and senior researchers in R&D as well as engineers in industry who are newcomers to the spatial characterization of either solar cells or PV modules. The concepts and approaches presented herein are based on but not limited to case studies of real thin-film PV devices. Key features: Review of spatially resolved characterization techniques and accompanying SPICE simulations in photovoltaics Use of spatially resolved characterization techniques and their combinations for the identification of inhomogeneities in small area CdTe and dye-sensitized solar cells Case studies of electroluminescence imaging of commercial PV modules (c-Si, CIGS, CdTe, a-Si, tandem and triple junction thin-film-Si) The contents are aimed at a readership of students and senior researchers in R&D as well as engineers in industry who are newcomers to the spatial characterization of either solar cells or PV modules. The concepts and approaches presented herein are based on but not limited to case studies of real thin-film PV devices. Key features: Review of spatially resolved characterization techniques and accompanying SPICE simulations in photovoltaics Use of spatially resolved characterization techniques and their combinations for the identification of inhomogeneities in small area CdTe and dye-sensitized solar cells Case studies of electroluminescence imaging of commercial PV modules (c-Si, CIGS, CdTe, a-Si, tandem and triple junction thin-film-Si)
The re-engineering of power transmission systems is crucial to meeting the objectives of such regulators as the European Union. In addition to its market, organisational and regulatory aspects, this re-engineering will also involve technical issues dealing with the progressive integration of innovative transmission technologies in the daily operation of transmission system operators. In this context, Advanced Technologies for Future Transmission Grids provides an overview of the most promising technologies, likely to be of help to planners of transmission grids in responding to the challenges of the future: security of supply; integration of renewable generation; and creation of integrated energy markets (using the European case as an example). These issues have increased importance because of administrative complication and the fragmentation of public opinion expressed on the build up of new infrastructure. For each technology discussed, the focus is on the technical-economic perspective rather than on purely technological points of view. A transmission-system-operator-targeted Technology Roadmap is presented for the integration of promising innovative power transmission technologies within power systems of the mid-long term. Although the primary focus of this text is in the sphere of the European energy market, the lessons learned can be generalized to the energy markets of other regions.
Power Conversion of Renewable Energy Systems presents an introduction to conventional energy conversion components and systems, as well as those related to renewable energy. This volume introduces systems first, and then in subsequent chapters describes the components of energy systems in detail. Readers will find examples of renewable and conventional energy and power systems, including energy conversion, variable-speed drives and power electronics, in addition to magnetic devices such as transformers and rotating machines. Applications of PSpice, MATLAB, and Mathematica are also included, along with solutions to over 100 application examples. Power Conversion of Renewable Energy Systems aims to instruct readers how to actively apply the theories discussed within. It would be an ideal volume for researchers, students and engineers working with energy systems and renewable energy.
Voltage references represent important VLSI structures, having multiple appli- tions in analog and mixed-signal circuits: measurement equipment, voltage re- lators, temperature sensors, data acquisition systems, memories, or AD and DA converters. Operating as a subcircuit in a complex system, an important requi- ment for this class of circuits is represented by the possibility of implementation in the existing technology, using the available active and passive devices. The most important performances of a voltage reference circuit are represented by temperature behavior, power supply rejection ratio, transient response and, for the latest designs, by low-power low-voltage operation. Depending on the load - quirements, the output of the circuit can be regulated or unregulated. In order to reduce the sensitivity of the reference voltage with respect to the supply voltage variations, modi?ed cascode structures can be implemented, a trade-off between line regulation and low-voltage operation being necessary in this case. A large bandwidth of the voltage reference improves the transient behavior of the circuit, implying also a good noise rejection. Referringtothe possibilities ofimplementinga voltagereferencecircuit,two d- ferent approaches could be identi?ed: voltage-mode and current-mode topologies, being also possible to design a mixed-mode voltage reference.
This textbooks demonstrates the application of software tools in solving a series of problems from the field of designing power system structures and systems. It contains four chapters: The first chapter leads the reader through all the phases necessary in the procedures of computer aided modeling and simulation. It guides through the complex problems presenting on the basis of eleven original examples. The second chapter presents application of software tools in power system calculations of power systems equipment design. Several design example calculations are carried out using engineering standards like MATLAB, EMTP/ATP, Excel & Access, AutoCAD and Simulink. The third chapters focuses on the graphical documentation using a collection of software tools (AutoCAD, EPLAN, SIMARIS SIVACON, SIMARIS DESIGN) which enable the complete automation of the development of graphical documentation of a power systems. In the fourth chapter, the application of software tools in the project management in power systems is discussed. Here, the emphasis is put on the standard software MS Excel and MS Project.
Integrated Resource Strategic Planning and Power Demand-Side Management elaborates two important methods - Integrated Resource Strategic Planning (IRSP) and Demand Side Management (DSM) - in terms of methodology modeling, case studies and lessons learned. This book introduces a prospective and realistic theory of the IRSP method and includes typical best practices of DSM for energy conservation and emission reduction in different countries. It can help energy providers and governmental decision-makers formulate policies and make plans for energy conservation and emission reduction, and can help power consumers reduce costs and participate in DSM projects. Zhaoguang Hu is the vice president and chief energy specialist at the State Grid Energy Research Institute, and the head of the Power Supply and Demand Research Laboratory in China.
This book is a collection of papers presented by renowned researchers, keynote speakers, and academicians in the International Conference on VLSI, Communication, Analog Designs, Signals & Systems and Networking (VCASAN-2013), organized by B.N.M. Institute of Technology, Bangalore, India during July 17-19, 2013. The book provides global trends in cutting-edge technologies in electronics and communication engineering. The content of the book is useful to engineers, researchers, and academicians as well as industry professionals.
The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.
This book provides a detailed analysis of all aspects of capacitive DC-DC converter design: topology selection, control loop design and noise mitigation. Readers will benefit from the authors' systematic overview that starts from the ground up, in-depth circuit analysis and a thorough review of recently proposed techniques and design methodologies. Not only design techniques are discussed, but also implementation in CMOS is shown, by pinpointing the technological opportunities of CMOS and demonstrating the implementation based on four state-of-the-art prototypes.
This SpringerBrief provides an in-depth look at the key issues that affect the performance of heterogeneous networks and presents schemes that can effectively tackle these issues. In particular, this book discusses unbalanced traffic load among the macro and micro Base Stations (BSs) caused by the transmit power disparity, and a load-balancing based mobile association scheme to balance the traffic load among the macro and micro BSs. This book also introduces a fractional frequency reuse (FFR) scheme with proper power control to help reduce interference at the UEs which are most vulnerable to such intra-cell interference. The last section investigates radio resource allocation issues for heterogeneous networks with cooperative relays, and proposes a resource allocation framework that could achieve proportional fairness among the UEs. Numerical results are provided to demonstrate the effectiveness of the proposed solutions in tackling the problem and improving network performance. Resource Management for Heterogeneous Networks in LTE-A Systems is designed for researchers and professionals working in networking and resource management. The content is also valuable for advanced-level students in computer science and electrical engineering.
As power systems develop to incorporate renewable energy
sources, the delivery systems may be disrupted by the changes
involved. The grid's technology and management must be developed to
form Smart Grids between consumers, suppliers and producers.
Conducted Electromagnetic Interference (EMI) in Smart Grids
considers the specific side effects related to electromagnetic
interference (EMI) generated by the application of these Smart
Grids.
Semiconductor power devices are the heart of power electronics. They determine the performance of power converters and allow topologies with high efficiency. Semiconductor properties, pn-junctions and the physical phenomena for understanding power devices are discussed in depth. Working principles of state-of-the-art power diodes, thyristors, MOSFETs and IGBTs are explained in detail, as well as key aspects of semiconductor device production technology. In practice, not only the semiconductor, but also the thermal and mechanical properties of packaging and interconnection technologies are essential to predict device behavior in circuits. Wear and aging mechanisms are identified and reliability analyses principles are developed. Unique information on destructive mechanisms, including typical failure pictures, allows assessment of the ruggedness of power devices. Also parasitic effects, such as device induced electromagnetic interference problems, are addressed. The book concludes with modern power electronic system integration techniques and trends.
Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid.
The understanding of hydrogen/lithium insertion phenomena is of great importance for the development of the next generation of functional electrochemical devices such as rechargeable batteries, electrochromic devices, and fuel cells. This volume introduces a variety of viable electrochemical methods to identify reaction mechanisms and evaluate relevant kinetic properties of insertion electrodes. The authors also outline various ways to analyze anomalous behaviour of hydrogen/lithium transport through insertion electrodes.
Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: * switched and averaged models; * small/large-signal models; and * time/frequency models. The second focuses on three groups of control methods: * linear control approaches normally associated with power converters; * resonant controllers because of their significance in grid-connected applications; and * nonlinear control methods including feedback linearization, stabilizing, passivity-based, and variable-structure control. Extensive case-study illustration and end-of-chapter exercises reinforce the study material. Power Electronics Converters Modeling and Control addresses the needs of graduate students interested in power electronics, providing a balanced understanding of theoretical ideas coupled with pragmatic tools based on control engineering practice in the field. Academics teaching power electronics will find this an attractive course text and the practical points make the book useful for self tuition by engineers and other practitioners wishing to bring their knowledge up to date.
Small Wind Turbines provides a thorough grounding in analysing, designing, building, and installing a small wind turbine. Small turbines are introduced by emphasising their differences from large ones and nearly all the analysis and design examples refer to small turbines. The accompanying software includes MATLAB (R) programs for power production and starting performance, as well as programs for detailed multi-objective optimisation of blade design. A spreadsheet is also given to help readers apply the simple load model of the IEC standard for small wind turbine safety. Small Wind Turbines represents the distilled outcome of over twenty years experience in fundamental research, design and installation, and field testing of small wind turbines. Small Wind Turbines is a suitable reference for student projects and detailed design studies, and also provides important background material for engineers and others using small wind turbines for remote power and distributed generation applications.
This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is derived and can be applied to predict the throughput of real-world scenarios of VANETs. The downlink capacity of VANETs is also investigated in which access infrastructure is deployed to provide pervasive Internet access to vehicles. Different alternatives of wireless access infrastructure are considered. A lower bound of downlink capacity is derived for each type of access infrastructure. The last section of this book presents a case study based on a perfect city grid to examine the capacity-cost trade-offs of different deployments since the deployment costs of different access infrastructure are highly variable.
This reference collects all relevant aspects electronic tap-changer and presents them in a comprehensive and orderly manner. It explains logically and systematically the design and optimization of a full electronic tap-changer for distribution transformers. The book provides a fully new insight to all possible structures of power section design and categorizes them comprehensively, including cost factors of the design. In the control section design, the authors review mechanical tap-changer control systems and they present the modeling of a full electronic tap-changer as well as a closed-loop control of the full-electronic tap-changer. The book is written for electrical engineers in industry and academia but should be useful also to postgraduate students of electrical engineering.
Power quality describes a set of parameters of electric power
and the load's ability to function properly under specific
conditions. It is estimated that problems relating to power quality
costs the European industry hundreds of billions of Euros annually.
In contrast, financing for the prevention of these problems amount
to fragments of these costs. Power Theories for Improved Power
Quality addresses this imbalance by presenting and assessing a
range of methods and problems related to improving the quality of
electric power supply.
This brief examines issues of spectrum allocation for the limited resources of radio spectrum. It uses a game-theoretic perspective, in which the nodes in the wireless network are rational and always pursue their own objectives. It provides a systematic study of the approaches that can guarantee the system's convergence at an equilibrium state, in which the system performance is optimal or sub-optimal. The author provides a short tutorial on game theory, explains game-theoretic channel allocation in clique and in multi-hop wireless networks and explores challenges in designing game-theoretic mechanisms for dynamic channel redistribution. Since designing a completely secure mechanism is extremely expensive or impossible in most of distributed autonomous systems, it is more beneficial to study misbehavior of the nodes and develop light-weighted game-theoretic channel allocation mechanisms. With a mix of theoretical and hands-on information, the brief traces the concepts of game theory, the current state of spectrum allocation in wireless networks and future competition for resources. Thorough yet accessible, the content is ideal for researchers and practitioners working on spectrum redistribution. It is also a helpful resource for researchers and advanced-level students interested in game theory and wireless communications. |
![]() ![]() You may like...
Micro and Nano Fabrication - Tools and…
Hans H. Gatzen, Volker Saile, …
Hardcover
R4,584
Discovery Miles 45 840
Intelligent Computing for Interactive…
Parisa Eslambolchilar, Mark Dunlop, …
Hardcover
R2,492
Discovery Miles 24 920
|