![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
"Electrochemical Impedance Spectroscopy in PEM Fuel Cells" discusses one of the most powerful and useful diagnostic tools for various aspects of the study of fuel cells: electrochemical impedance spectroscopy (EIS). This comprehensive reference on EIS fundamentals and applications in fuel cells contains information about basic principles, measurements, and fuel cell applications of the EIS technique. Many illustrated examples are provided to ensure maximum clarity and observability of the spectra. "Electrochemical Impedance Spectroscopy in PEM Fuel Cells" will enable readers to explore the frontiers of EIS technology in PEM fuel cell research and other electrochemical systems. As well as being a useful text for electrochemists, it can also help researchers who are unfamiliar with EIS to learn the technique quickly and to use it correctly in their fuel cell research. Managers or entrepreneurs may also find this book a useful guide to accessing the challenges and opportunities in fuel cell technology.
This volume consists of selected essays by participants of the workshop Control at Large Scales: Energy Markets and Responsive Grids held at the Institute for Mathematics and its Applications, Minneapolis, Minnesota, U.S.A. from May 9-13, 2016. The workshop brought together a diverse group of experts to discuss current and future challenges in energy markets and controls, along with potential solutions. The volume includes chapters on significant challenges in the design of markets and incentives, integration of renewable energy and energy storage, risk management and resilience, and distributed and multi-scale optimization and control. Contributors include leading experts from academia and industry in power systems and markets as well as control science and engineering. This volume will be of use to experts and newcomers interested in all aspects of the challenges facing the creation of a more sustainable electricity infrastructure, in areas such as distributed and stochastic optimization and control, stability theory, economics, policy, and financial mathematics, as well as in all aspects of power system operation.
"Proceedings of the First Symposium on Aviation Maintenance and Management "collects selected papers from the conference of ISAMM 2013 in China held in Xi'an on November 25-28, 2013. The book presents state-of-the-art studies on the aviation maintenance, test, fault diagnosis, and prognosis for the aircraft electronic and electrical systems. The selected works can help promote the development of the maintenance and test technology for the aircraft complex systems. Researchers and engineers in the fields of electrical engineering and aerospace engineering can benefit from the book. Jinsong Wang is a professor at School of Mechanical and Electronic Engineering of Northwestern Polytechnical University, China.
Automatic learning is a complex, multidisciplinary field of research and development, involving theoretical and applied methods from statistics, computer science, artificial intelligence, biology and psychology. Its applications to engineering problems, such as those encountered in electrical power systems, are therefore challenging, while extremely promising. More and more data have become available, collected from the field by systematic archiving, or generated through computer-based simulation. To handle this explosion of data, automatic learning can be used to provide systematic approaches, without which the increasing data amounts and computer power would be of little use. Automatic Learning Techniques in Power Systems is dedicated to the practical application of automatic learning to power systems. Power systems to which automatic learning can be applied are screened and the complementary aspects of automatic learning, with respect to analytical methods and numerical simulation, are investigated. This book presents a representative subset of automatic learning methods - basic and more sophisticated ones - available from statistics (both classical and modern), and from artificial intelligence (both hard and soft computing). The text also discusses appropriate methodologies for combining these methods to make the best use of available data in the context of real-life problems. Automatic Learning Techniques in Power Systems is a useful reference source for professionals and researchers developing automatic learning systems in the electrical power field.
This book provides knowledge into the intelligence and security areas of smart-city paradigms. It focuses on connected computing devices, mechanical and digital machines, objects, and/or people that are provided with unique identifiers. The authors discuss the ability to transmit data over a wireless network without requiring human-to-human or human-to-computer interaction via secure/intelligent methods. The authors also provide a strong foundation for researchers to advance further in the assessment domain of these topics in the IoT era. The aim of this book is hence to focus on both the design and implementation aspects of the intelligence and security approaches in smart city applications that are enabled and supported by the IoT paradigms. Presents research related to cognitive computing and secured telecommunication paradigms; Discusses development of intelligent outdoor monitoring systems via wireless sensing technologies; With contributions from researchers, scientists, engineers and practitioners in telecommunication and smart cities.
This book provides an overview of state-of-the-art research on "Systems and Optimization Aspects of Smart Grid Challenges." The authors have compiled and integrated different aspects of applied systems optimization research to smart grids, and also describe some of its critical challenges and requirements. The promise of a smarter electricity grid could significantly change how consumers use and pay for their electrical power, and could fundamentally reshape the current Industry. Gaining increasing interest and acceptance, Smart Grid technologies combine power generation and delivery systems with advanced communication systems to help save energy, reduce energy costs and improve reliability. Taken together, these technologies support new approaches for load balancing and power distribution, allowing optimal runtime power routing and cost management. Such unprecedented capabilities, however, also present a set of new problems and challenges at the technical and regulatory levels that must be addressed by Industry and the Research Community.
The liberalization of U.S. and European electric power markets presents a critical challenge for renewable sources of energy. Edinger and Kaul survey the technological state-of-the-art and economic aspects of renewable electricity generation, and outline the role of other renewable sources, such as solar, wind, and micro-hydroelectric technologies. Offering an empirical and theoretical assessment of these technologies and their assets and liabilities, the book shows how it is possible to restructure our electric power systems and reorient them toward sustainable and environmentally friendly alternatives. International climate conferences such as those in Rio de Janeiro and Kyoto have proclaimed the need for environmentally hospitable technologies. A new electricity system, based on renewable resources and small-scale power technologies, is needed badly; their economics and other efficiencies over conventional central power generation with fossil fuels is clear. Edinger and Kaul assess the rewards and risks associated with renewable technologies and outline a feasible path toward a more environmentally friendly, and reasonable, use of limited natural resources and the global ecosystem. One promising approach for industrialized countries is the decentralization of our current public grid systems. This offers an opportunity for developing countries to leapfrog the stage of fossil fuel, held responsible now for environmental pollution, resource depletion and possibly global climate change. The authors present theoretical analyses and empirical evidence to buttress their contentions, mainly, that electric power systems founded on renewable resources are vital prerequisites if we are to achieve the United Nations' target of globally sustained development.
Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES-UETP umbrella in 2010 and 2011, this contributed volume consists of nine chapters written by leading researchers and professionals from the industry as well as academia.
This book reports on the latest findings in the application of the wide area measurement systems (WAMS) in the analysis and control of power systems. The book collects new research ideas and achievements including a delay-dependent robust design method, a wide area robust coordination strategy, a hybrid assessment and choice method for wide area signals, a free-weighting matrices method and its application, as well as the online identification methods for low-frequency oscillations. The main original research results of this book are a comprehensive summary of the authors' latest six-year study. The book will be of interest to academic researchers, R&D engineers and graduate students in power systems who wish to learn the core principles, methods, algorithms, and applications of the WAMS.
Electrical Power Transmission System Engineering: Analysis and Design is devoted to the exploration and explanation of modern power transmission engineering theory and practice. Designed for senior-level undergraduate and beginning-level graduate students, the book serves as a text for a two-semester course or, by judicious selection, the material may be condensed into one semester. Written to promote hands-on self-study, it also makes an ideal reference for practicing engineers in the electric power utility industry. Basic material is explained carefully, clearly, and in detail, with multiple examples. Each new term is defined as it is introduced. Ample equations and homework problems reinforce the information presented in each chapter. A special effort is made to familiarize the reader with the vocabulary and symbols used by the industry. Plus, the addition of numerous impedance tables for overhead lines, transformers, and underground cables makes the text self-contained. The Third Edition is not only up to date with the latest advancements in electrical power transmission system engineering, but also: Provides a detailed discussion of flexible alternating current (AC) transmission systems Offers expanded coverage of the structures, equipment, and environmental impacts of transmission lines Features additional examples of shunt fault analysis using MATLAB (R) Also included is a review of the methods for allocating transmission line fixed charges among joint users, new trends and regulations in transmission line construction, a guide to the Federal Energy Regulatory Commission (FERC) electric transmission facilities permit process and Order No. 1000, and an extensive glossary of transmission system engineering terminology. Covering the electrical and mechanical aspects of the field with equal detail, Electrical Power Transmission System Engineering: Analysis and Design, Third Edition supplies a solid understanding of transmission system engineering today.
This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book's individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration technologies. Its main objective is to present the design and implementation processes for medium-voltage converters, allowing the direct grid integration of renewable power plants without the need for step-up transformers.
This book documents recent advances in the field of modeling, simulation, control, security and reliability of Cyber- Physical Systems (CPS) in power grids. The aim of this book is to help the reader gain insights into working of CPSs and understand their potential in transforming the power grids of tomorrow. This book will be useful for all those who are interested in design of cyber-physical systems, be they students or researchers in power systems, CPS modeling software developers, technical marketing professionals and business policy-makers.
Classical circuit theory is a mathematical theory of linear, passive circuits, namely, circuits composed of resistors, capacitors and inductors. Like many a thing classical, it is old and enduring, structured and precise, simple and elegant. It is simple in that everything in it can be deduced from ?rst principles based on a few physical laws. It is enduring in that the things we can say about linear, passive circuits are universally true, unchanging. No matter how complex a circuit may be, as long as it consists of these three kinds of elements, its behavior must be as prescribed by the theory. The theory tells us what circuits can and cannot do. As expected of any good theory, classical circuit theory is also useful. Its ulti mate application is circuit design. The theory leads us to a design methodology that is systematic and precise. It is based on just two fundamental theorems: that the impedance function of a linear, passive circuit is a positive real function, and that the transfer function is a bounded real function, of a complex variable.
This book is a seque1 to Reliability Evaluation of Engineering Systems: Concepts and Techniques, written by the same authors and published by Pitman Books in January 1983. * As a sequel, this book is intended to be considered and read as the second oftwo volumes rather than as a text that stands on its own. For this reason, readers who are not familiar with basic reliability modelling and evaluation should either first read the companion volume or, at least, read the two volumes side by side. Those who are already familiar with the basic concepts and only require an extension of their knowledge into the power system problem area should be able to understand the present text with little or no reference to the earlier work. In order to assist readers, the present book refers frequently to the first volume at relevant points, citing it simply as Engineering Systems. Reliability Evaluation of Power Systems has evolved from our deep interest in education and our long-standing involvement in quantitative reliability evaluation and application of probability techniques to power system problems. It could not have been written, however, without the active involvement of many students in our respective research programs. There have been too many to mention individu ally hut most are recorded within the references at the ends of chapters."
This book discusses stochastic dynamics of power systems and the related analytical methodology. It summarizes and categorizes the stochastic elements of power systems and develops a framework for research on stochastic dynamics of power systems. It also establishes a research model for stochastic dynamics of power systems and theoretically proves stochastic stability in power systems. Further, in addition to demonstrating the stochastic oscillation mechanism in power systems, it also proposes methods for quantitative analysis and stochastic optimum control in the field of stochastic dynamic security in power systems. This book is a valuable resource for researchers, scholars and engineers in the field of electrics.
This edited book is directed primarily to the discussion of the most recent developments and on-going research related to all areas pertaining to plant surveillance and diagnosis. The secondary aim of this book is to identify the successful applications of already well-settled methodological tools in the field. It will highlight advantages of intelligent systems, AI techniques, and integration of soft computing tools and traditional tools, for a better service in all aspects related to power plant surveillance and diagnostics. It also reports recent research results and provides a state of the art on AI in power plant surveillance and diagnostics. The book especially focuses on theoretical and analytical solutions to the problems of real interest in AI techniques, possibly combined with other traditional computing tools.
This book illustrates operation and maintenance practices/guidelines for economic generation and managing health of a thermal power generator beyond its regulatory life. The book provides knowledge for professionals managing power station operations, through its unique approach to chemical analysis of water, steam, oil etc. to identify malfunctioning/defects in equipment/systems much before the physical manifestation of the problem. The book also contains a detailed procedure for conducting performance evaluation tests on different equipment, and for analyzing test results for predicting maintenance requirements, which has lent a new dimension to power systems operation and maintenance practices. A number of real life case studies also enrich the book. This book will prove particularly useful to power systems operations professionals in the developing economies, and also to researchers and students involved in studying power systems operations and control.
Halbleiter-Leistungsbauelemente sind das Kernstuck der Leistungselektronik. Sie bestimmen die Leistungsfahigkeit und machen neuartige und verlustarme Schaltungen erst moeglich. In dem Band wird neben den Halbleiter-Leistungsbauelementen selbst auch die Aufbau- und Verbindungstechnik behandelt: von den physikalischen Grundlagen und der Herstellungstechnologie uber einzelne Bauelemente bis zu thermomechanischen Problemen, Zerstoerungsmechanismen und Stoerungseffekten. Die 2., uberarbeitete Auflage berucksichtigt technische Neuerungen und Entwicklungen.
This book focuses on the latest research and developments in photovoltaic (PV) power plants, and provides extensive coverage of fundamental theories, current research and developmental activities, and new approaches intended to overcome a number of critical limitations in today's grid integration technologies. The design and implementation process for large-scale solar PV power plants is introduced. The content provided will actively support the development of future renewable power plants and smart grid applications. The book will be of interest to researchers, professionals and graduate students in electrical and electronics fields seeking to understand the related technologies involved in PV power plants.
Although conventional cogeneration systems have been used successfully in the last two decades, most of them have been large units using mainly hydrocarbon fuels that are becoming increasingly expensive. New cogeneration systems based on fuel cells and sorption air conditioning systems promise to be an energy-saving alternative for situations when cooling, heating and power are needed at low and medium capacities. Cogeneration Fuel Cell-Sorption Air Conditioning Systems examines the thermodynamic principles of fuel cell performance and sorption air conditioning systems, and gives relevant information about the state of the art of these technologies. It also provides the reader with the theoretical bases and knowledge needed to understand the operation of these new cogeneration systems, as well as discussing the design basis and economical evaluation. Topics covered include: * selected fuel cells for cogeneration CHP processes; * state-of-the-art sorption refrigeration systems; * potential applications in demonstration projects; and * profitability assessment of the cogeneration system. Air conditioning and fuel cell engineers; postgraduates and researchers in energy fields; and designers of cooling, heating and power cogeneration systems will find Cogeneration Fuel Cell-Sorption Air Conditioning Systems a useful and informative reference.
This book showcases the strengths of Linear Programming models for Cyber Physical Systems (CPS), such as the Smart Grids. Cyber-Physical Systems (CPS) consist of computational components interconnected by computer networks that monitor and control switched physical entities interconnected by physical infrastructures. A fundamental challenge in the design and analysis of CPS is the lack of understanding in formulating constraints for complex networks. We address this challenge by employing collection of Linear programming solvers that models the constraints of sub-systems and micro grids in a distributed fashion. The book can be treated as a useful resource to adaptively schedule resource transfers between nodes in a smart power grid. In addition, the feasibility conditions and constraints outlined in the book will enable in reaching optimal values that can help maintain the stability of both the computer network and the physical systems. It details the collection of optimization methods that are reliable for electric-utilities to use for resource scheduling, and optimizing their existing systems or sub-systems. The authors answer to key questions on ways to optimally allocate resources during outages, and contingency cases (e.g., line failures, and/or circuit breaker failures), how to design de-centralized methods for carrying out tasks using decomposition models; and how to quantify un-certainty and make decisions in the event of grid failures.
The electric utility's increasing use of power factor correction capacitor banks and the industry's widespread application of power-electronic converters have set the basis for, recently, paying considerable attention to the issue of power system harmonics. Aiming at a better understanding of power system harmonics, this text presents a discussion of this issue, providing a quantitative analysis when possible. Pertinent equations are developed. 80 practical case studies based on real-life work experience come with the text. These are analysed providing the results and commenting on the output. Furthermore, 80 end-of-chapter problems are provided. A detailed solution manual is available. The book can be used as a textbook for undergraduate and graduate students, in short-courses offered by consultants and institutes, as well as a tutorial, reference, or self-study course for practising engineers in the industry and electric utilities.
This proceedings book gathers papers presented at the 4th International Conference on Advanced Engineering Theory and Applications 2017 (AETA 2017), held on 7-9 December 2017 at Ton Duc Thang University, Ho Chi Minh City, Vietnam. It presents selected papers on 13 topical areas, including robotics, control systems, telecommunications, computer science and more. All selected papers represent interesting ideas and collectively provide a state-of-the-art overview. Readers will find intriguing papers on the design and implementation of control algorithms for aerial and underwater robots, for mechanical systems, efficient protocols for vehicular ad hoc networks, motor control, image and signal processing, energy saving, optimization methods in various fields of electrical engineering, and others. The book also offers a valuable resource for practitioners who want to apply the content discussed to solve real-life problems in their challenging applications. It also addresses common and related subjects in modern electric, electronic and related technologies. As such, it will benefit all scientists and engineers working in the above-mentioned fields of application.
The book covers all topics that are considered essential for understanding the operation and design of EHV, AC overhead lines and underground cables. Theoretical analysis of all problems combined with practical application are presented in detail. EHV laboratory equipment and testing are fully covered together with application of digital recorders, fibre optics, etc. for impulse measurements. Every chapter contains many worked examples in order to illustrate and reinforce the theory. All examples are taken from practical situations as far as possible. |
![]() ![]() You may like...
Recent Advances in Power Systems…
Om Hari Gupta, Vijay Kumar Sood
Hardcover
R3,035
Discovery Miles 30 350
Understanding and Mitigating Ageing in…
Philip G. Tipping
Paperback
Materials for Ultra-Supercritical and…
Augusto Di Gianfrancesco
Hardcover
Condition Monitoring of Rotating…
Peter Tavner, Li Ran, …
Hardcover
Smart Grid Security - Innovative…
Florian Skopik, Paul Dr. Smith
Paperback
R2,235
Discovery Miles 22 350
|