![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
This riveting study shows how the intersection of technology and politics has shaped South African history since the 1960s. It is impossible to understand South Africa’s energy crisis without knowing this history. Faeeza Ballim’s deeply researched book challenges many prevailing assumptions and beliefs made regarding the crisis. The book highlights the importance of technology to our understanding of South African history and challenges the idea that the technological state corporations were proxies for the apartheid government. While a part of the broader national modernization project under apartheid, these corporations also set the stage for worker solidarity and trade union organization in the Waterberg and elsewhere in the country. Faeeza Ballim argues that the state corporations, their technology, and their engineers enjoyed ambivalent relationships with the governments of their time. And in the democratic era, while Eskom has been caught up in the scourge of government corruption, it has retained a degree of organizational autonomy and offered a degree of resistance to those who were attempting further corrupt practices.
Within this book the fundamental concepts associated with the topic
of power electronic control are covered alongside the latest
equipment and devices, new application areas and associated
computer-assisted methods.
With the integration of more distributed or aggregated renewables, and the wide utilization of power electronic devices, modern power systems are facing new stability and security challenges, such as the weakly damped oscillation caused by wind farms connected through long distance transmission lines, the frequency stability problem induced by the reduction of inertia and the voltage stability issue resulting from the interactions between transmission systems and dynamic loads. Meanwhile, synchronized phasor measurement technology developed very fast in the last decade, and more phasor measurement units (PMUs) and wide area measurement systems (WAMSs) have been deployed. These provide more insights into the system dynamics and approaches to overcoming the new challenges. This book addresses the emerging concepts, methodologies and applications of wide area monitoring, control and protection in power systems with integrated large scale renewables. Chapters cover monitoring, modelling and validation, control, and data mining with an emphasis on synchrophasor technology, and experiences with real power grids.
Power Systems Modelling and Fault Analysis: Theory and Practice, Second Edition, focuses on the important core areas and technical skills required for practicing electrical power engineers. Providing a comprehensive and practical treatment of the modeling of electrical power systems, the book offers students and professionals the theory and practice of fault analysis of power systems, covering detailed and advanced theories and modern industry practices. The book describes relevant advances in the industry, such as international standards developments and new generation technologies, such as wind turbine generators, fault current limiters, multi-phase fault analysis, the measurement of equipment parameters, probabilistic short-circuit analysis, and more.
Condition monitoring of engineering plants has increased in importance as engineering processes have become increasingly automated. However, electrical machinery usually receives attention only at infrequent intervals when the plant or the electricity generator is shut down. The economics of industry have been changing, placing ever more emphasis on the importance of reliable operation of the plants. Electronics and software in instrumentation, computers, and digital signal processors have improved our ability to analyse machinery online. Condition monitoring is now being applied to a range of systems from fault-tolerant drives of a few hundred watts to machinery of a few hundred MW in major plants. This book covers a large range of machines and their condition monitoring. This 3rd edition builds on the 2nd edition through a major revision, update of chapters and a comprehensive list of references & standards. Permanent magnet, switched reluctance and other types of machines are now covered, as well as variable speed drive machines and off-line techniques. Contents cover an introduction to condition monitoring; rotating electrical machines; electrical machine construction, operation and failure modes; reliability of machines and typical failure rates; signal processing and instrumentation requirements; on-line temperature monitoring; on-line chemical monitoring; on-line vibration monitoring; on-line current, flux and power monitoring; on-line partial discharge (PD) electrical monitoring; on-line variable speed drive machine monitoring; off-line monitoring; condition-based maintenance and asset management; application of artificial intelligence techniques to CM; and safety, training and qualification.
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants provides researchers in academia and industry with an essential overview of the stronger high-temperature materials required for key process components, such as membrane wall tubes, high-pressure steam piping and headers, superheater tubes, forged rotors, cast components, and bolting and blading for steam turbines in USC power plants. Advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels, are also addressed. Chapters on international research directions complete the volume. The transition from conventional subcritical to supercritical thermal power plants greatly increased power generation efficiency. Now the introductions of the ultra-supercritical (USC) and, in the near future, advanced ultra-supercritical (A-USC) designs are further efforts to reduce fossil fuel consumption in power plants and the associated carbon dioxide emissions. The higher operating temperatures and pressures found in these new plant types, however, necessitate the use of advanced materials.
Plant life management (PLiM) is a methodology focussed on the safety-first management of nuclear power plants over their entire lifetime. It incorporates and builds upon the usual periodic safety reviews and licence renewals as part of an overall framework designed to assist plant operators and regulators in assessing the operating conditions of a nuclear power plant, and establishing the technical and economic requirements for safe, long-term operation. Understanding and mitigating ageing in nuclear power plants critically reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC), along with their relevant analysis and mitigation paths, as well as reactor-type specific PLiM practices. Obsolescence and other less obvious ageing-related aspects in nuclear power plant operation are also examined in depth. Part one introduces the reader to the role of nuclear power in the global energy mix, and the importance and relevance of plant life management for the safety regulation and economics of nuclear power plants. Key ageing degradation mechanisms and their effects in nuclear power plant systems, structures and components are reviewed in part two, along with routes taken to characterise and analyse the ageing of materials and to mitigate or eliminate ageing degradation effects. Part three reviews analysis, monitoring and modelling techniques applicable to the study of nuclear power plant materials, as well as the application of advanced systems, structures and components in nuclear power plants. Finally, Part IV reviews the particular ageing degradation issues, plant designs, and application of plant life management (PLiM) practices in a range of commercial nuclear reactor types. With its distinguished international team of contributors, Understanding and mitigating ageing in nuclear power plants is a standard reference for all nuclear plant designers, operators, and nuclear safety and materials professionals and researchers.
The Smart Grid security ecosystem is complex and multi-disciplinary, and relatively under-researched compared to the traditional information and network security disciplines. While the Smart Grid has provided increased efficiencies in monitoring power usage, directing power supplies to serve peak power needs and improving efficiency of power delivery, the Smart Grid has also opened the way for information security breaches and other types of security breaches. Potential threats range from meter manipulation to directed, high-impact attacks on critical infrastructure that could bring down regional or national power grids. It is essential that security measures are put in place to ensure that the Smart Grid does not succumb to these threats and to safeguard this critical infrastructure at all times. Dr. Florian Skopik is one of the leading researchers in Smart Grid security, having organized and led research consortia and panel discussions in this field. Smart Grid Security will provide the first truly holistic view of leading edge Smart Grid security research. This book does not focus on vendor-specific solutions, instead providing a complete presentation of forward-looking research in all areas of Smart Grid security. The book will enable practitioners to learn about upcoming trends, scientists to share new directions in research, and government and industry decision-makers to prepare for major strategic decisions regarding implementation of Smart Grid technology.
The UK model of incentive regulation of power grids was at one time the most advanced, and elements of it were adopted throughout the EU. This model worked well, particularly in the context of limited investment and innovation, a single and strong regulatory authority, and limited coordination between foreign grid operators. This enlightening book demonstrates how the landscape has changed markedly since 2010 and that regulation has had to work hard to catch up and evolve. As the EU enters a wave of investment and an era of new services and innovation, this has created growing tensions between national regulatory authorities in terms of coordinating technical standards and distribution systems. This is being played out against an increasingly disruptive backdrop of digitization, new market platforms and novel business models. Electricity Network Regulation in the EU adopts a truly European approach to the complex issues surrounding the topic, focusing on the grey areas and critical questions that have traditionally been difficult to answer. Incentive regulation and grids are addressed simultaneously at the theoretical and practical level, providing the reader with fundamental concepts and concrete examples. This timely book is an invaluable read for energy practitioners working in utility companies, regulators and other public bodies. It will also appeal to academics involved in the world of electricity regulation. The book utilizes language that would make it suitable for interdisciplinary students, including engineering and law scholars. Contributors include: P. Bhagwat, J.-M. Glachant, S.Y. Hadush, L. Meeus, V. Rious, N. Rossetto, T. Schittekatte
Smart technology has significantly enhanced the efficient management of electric power supply systems. Despite the benefits of these advances, the complexity of such systems has proven to be difficult for testing purposes. Smart Grid Test Bed Using OPNET and Power Line Communication: Emerging Research and Opportunities presents an innovative perspective on the design, development, and implementation of an expandable test bed for smart grid applications. Highlighting pertinent topics such as intrusion detection, user interface, and performance evaluation, this book is an ideal reference source for researchers, academics, engineers, students, and professionals interested in the latest advancements for smart grid technologies.
This book presents select proceedings of Electric Power and Renewable Energy Conference 2020 (EPREC 2020). This book provides rigorous discussions, case studies, and recent developments in the emerging areas of the power system, especially, renewable energy conversion systems, distributed generations, microgrid, smart grid, HVDC & FACTS, power system protection, etc. The readers would be benefited in terms of enhancing their knowledge and skills in the domain areas. The book will be a valuable reference for beginners, researchers, and professionals interested in developments in the power system.
<> Adaptive Filter Theory, 5e, is ideal for courses in Adaptive Filters. Haykin examines both the mathematical theory behind various linear adaptive filters and the elements of supervised multilayer perceptrons. In its fifth edition, this highly successful book has been updated and refined to stay current with the field and develop concepts in as unified and accessible a manner as possible.
This book discusses novel methods for planning and coordinating converters when an existing point-to-point (PtP) HVDC link is expanded into a multi-terminal HVDC (MTDC) system. It demonstrates that expanding an existing PtP HVDC link is the best way to build an MTDC system, and is especially a better option than the build-from-scratch approach in cases where several voltage-sourced converter (VSC) HVDC links are already in operation. The book reports in detail on the approaches used to estimate the new steady-state operation limits of the expanded system and examines the factors influencing them, revealing new operation limits in the process. Further, the book explains how to coordinate the converters to stay within the limits after there has been a disturbance in the system. In closing, it describes the current DC grid control concept, including how to implement it in an MTDC system, and introduces a new DC grid control layer, the primary control interface (IFC).
This book discusses the use of efficient metaheuristic algorithms to solve diverse power system problems, providing an overview of the various aspects of metaheuristic methods to enable readers to gain a comprehensive understanding of the field and of conducting studies on specific metaheuristic algorithms related to power-system applications. By bridging the gap between recent metaheuristic techniques and novel power system methods that benefit from the convenience of metaheuristic methods, it offers power system practitioners who are not metaheuristic computation researchers insights into the techniques, which go beyond simple theoretical tools and have been adapted to solve important problems that commonly arise. On the other hand, members of the metaheuristic computation community learn how power engineering problems can be translated into optimization tasks, and it is also of interest to engineers and application developers. Further, since each chapter can be read independently, the relevant information can be quickly found. Power systems is a multidisciplinary field that addresses the multiple approaches used for design and analysis in areas ranging from signal processing, and electronics to computational intelligence, including the current trend of metaheuristic computation.
This book presents a new topology of the non-isolated online uninterruptible power supply (UPS) system consisting of 3 components: bridgeless boost rectifier, battery charger/discharger, and an inverter. The online UPS system is considered to be the most preferable UPS due to its high level of power quality and proven reliability against all types of line disturbances and power outages. The new battery charger/discharger reduces the battery bank voltage, which improves performance and reliability, while a new control method for the inverter regulates the output voltage for both linear and nonlinear loads. The proposed USP system shows an efficiency of 94% during battery mode and 92% during the normal mode of operation.
This book presents original, peer-reviewed research papers from the 4th Purple Mountain Forum -International Forum on Smart Grid Protection and Control (PMF2019-SGPC), held in Nanjing, China on August 17-18, 2019. Addressing the latest research hotspots in the power industry, such as renewable energy integration, flexible interconnection of large scale power grids, integrated energy system, and cyber physical power systems, the papers share the latest research findings and practical application examples of the new theories, methodologies and algorithms in these areas. As such book a valuable reference for researchers, engineers, and university students.
This book addresses the emerging trend of smart grids in power systems. It discusses the advent of smart grids and selected technical implications; further, by combining the perspectives of researchers from Europe and South America, the book captures the status quo of and approaches to smart grids in a wide range of countries. It describes the basic concepts, enabling readers to understand the theoretical aspects behind smart grid formation, while also examining current challenges and philosophical discussions. Like the industrial revolution and the birth of the Internet, smart grids are certain to change the way people use electricity. In this regard, a new term - the "prosumer" - is used to describe consumers who may sometimes also be energy producers. This is particularly appealing if we bear in mind that most of the distributed power generation in smart grids does not involve carbon emissions. At first glance, the option of generating their own power could move consumers to leave their current energy provider. Yet the authors argue that doing so is not a wise choice: utilities will play a central role in this new scenario and should not be ignored.
This book presents a novel control method for power converters, referred to as m-mode control. It provides an overview of traditional control methods for inverters - e.g. PWM and SVPWM - and the theory of the m-mode control method, while also discussing and applying m-mode control on various types of converters (including three-phase, nine-switch, five-leg and multi-level inverters, PWM rectifiers and modular multi-level converters). The book provides readers with sufficient background and understanding to delve deeper into the topic of SVPWM control. It is also a valuable guide for engineers and researchers whose work involves power converter control.
This book discusses a number of important topical technical and non-technical issues related to the global energy, environment and socio-economic developments for professionals and students directly and indirectly involved in the relevant fields. It shows how renewable energy offers solutions to mitigate energy demand and helps achieve a clean environment, and also addresses the lack of a clear vision in the development of technology and a policy to reach the mandatory global renewable energy targets to reduce greenhouse gas emissions and stimulate socio-economic development. The book is structured in such a way that it provides a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations; future technologies for power grids and their control, stability and reliability are also presented.
This book is the first of its kind to comprehensively describe the principles of demand response. This allows consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage in response to the grid reliability need, time-based rates or other forms of financial incentives. The main contents of the book include modeling of demand response resources, incentive design, scheduling and dispatch algorithms, and impacts on grid operation and planning. Through case studies and illustrative examples, the authors highlight and compare the advantages, disadvantages and benefits that demand response can have on grid operations and electricity market efficiency. First book of its kind to introduce the principles of demand response; Combines theory with real-world applications useful for both professionals and academic researchers; Covers demand response in the context of power system applications.
Distributed Generation Systems: Design, Operation and Grid Integration closes the information gap between recent research on distributed generation and industrial plants, and provides solutions to their practical problems and limitations. It provides a clear picture of operation principles of distributed generation units, not only focusing on the power system perspective but targeting a specific need of the research community. This book is a useful reference for practitioners, featuring worked examples and figures on principal types of distributed generation with an emphasis on real-world examples, simulations, and illustrations. The book uses practical exercises relating to the concepts of operating and integrating DG units to distribution networks, and helps engineers accurately design systems and reduce maintenance costs.
This book provides readers with an in-depth discussion of circuit simulation, combining basic electrical engineering circuit theory with Python programming. It fills an information gap by describing the development of Python Power Electronics, an open-source software for simulating circuits, and demonstrating its use in a sample circuit. Unlike typical books on circuit theory that describe how circuits can be solved mathematically, followed by examples of simulating circuits using specific, commercial software, this book has a different approach and focus. The author begins by describing every aspect of the open-source software, in the context of non-linear power electronic circuits, as a foundation for aspiring or practicing engineers to embark on further development of open source software for different purposes. By demonstrating explicitly the operation of the software through algorithms, this book brings together the fields of electrical engineering and software technology. |
![]() ![]() You may like...
Mathematics Instructional Practices in…
Berinderjeet Kaur, Yew Hoong Leong
Hardcover
R2,924
Discovery Miles 29 240
Aiding Forensic Investigation Through…
Alex Noel Joseph Raj, Vijayalakshmi G. V. Mahesh, …
Hardcover
R6,724
Discovery Miles 67 240
|