![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
This riveting study shows how the intersection of technology and politics has shaped South African history since the 1960s. It is impossible to understand South Africa’s energy crisis without knowing this history. Faeeza Ballim’s deeply researched book challenges many prevailing assumptions and beliefs made regarding the crisis. The book highlights the importance of technology to our understanding of South African history and challenges the idea that the technological state corporations were proxies for the apartheid government. While a part of the broader national modernization project under apartheid, these corporations also set the stage for worker solidarity and trade union organization in the Waterberg and elsewhere in the country. Faeeza Ballim argues that the state corporations, their technology, and their engineers enjoyed ambivalent relationships with the governments of their time. And in the democratic era, while Eskom has been caught up in the scourge of government corruption, it has retained a degree of organizational autonomy and offered a degree of resistance to those who were attempting further corrupt practices.
Within this book the fundamental concepts associated with the topic
of power electronic control are covered alongside the latest
equipment and devices, new application areas and associated
computer-assisted methods.
The intermittency of renewable energy sources is making increased deployment of storage technology necessary. Technologies are needed with high round-trip efficiency and at low cost to allow renewables to undercut fossil fuels. The cost of lithium batteries has fallen, but producing them comes with a substantial carbon footprint, as well as a cost to the local environment. Compressed air energy storage (CAES) uses excess electricity, particularly from wind farms, to compress air. Re-expansion of the air then drives machinery to recoup the electric power. Prototypes have capacities of several hundred MW. Challenges lie in conserving the thermal energy associated with compressing air and leakage of that heat, materials, power electronics, connection with the power generator, and grid integration. This comprehensive book provides a systematic overview of the current state of CAES technology. After an introduction to motivation and principles, the key components are covered, and then the principal types of systems in the order of technical maturity: diabatic, adiabatic, and isothermal. Experts from industry write about their experiences with existing major systems and prototypes. Economic aspects, power electronics and machinery, as well as special systems for offshore applications, are dealt with. Researchers in academia and industry alike, in particular at energy storage technology manufacturers and utilities, as well as advanced students and energy experts in think tanks will find this work valuable reading.
Power systems are becoming increasingly complex as well as flexible, able to integrate distributed renewable generation, EV, and additional loads. This expanded and updated second edition covers the technologies needed to operate modern power grids. Initial chapters cover power system modelling, telegrapher equations, power flow analysis, discrete Fourier transformation and stochastic differential equations. Ensuing chapters deal with power system operation and control, power flow, real-time control and state estimation techniques for distribution systems as well as shipboard systems. The final chapters describe stability analysis of power systems and cover voltage stability, transient stability, time delays, and limit cycles. New content for the second edition includes four new chapters on recent modelling, control and stability analysis of power electronic converters and electric vehicles. This new edition is an essential guide to technologies for operating modern flexible power systems for PhD students, early-career researchers and practitioners in the field.
Nanogrids are small energy grids, powered by various generators often including photovoltaics. For example, a nanogrid might supply a village in a rural area and allow that village to trade its surplus energy. A picogrid is a still smaller energy grid. IRENA defines nanogrids as systems handling up to 5 kW of power while picogrids handle up to 1 kW. Nanogrids and picogrids can play roles in urban, suburban and rural areas, particularly in developing countries, and can help with decarbonising the energy systems and empowering citizens. Electric vehicles (EV) are poised to play important roles and need to be accounted for in emerging and future small grids. This book introduces the principles of nano- and picogrids, then goes on to provide a technical analysis covering connected resources, modelling and performance, power quality and protection. The use of nano- and picogrids in conjunction with EV, charger technologies, the IoT, cloud computing and data sharing is explored. Case studies of real-life projects help readers to understand and apply the concepts for their own projects. Nanogrids and Picogrids and their Integration with Electric Vehicles is a valuable resource for researchers involved with power systems, particularly those with an interest in power supply in rural areas, or anyone with a particular interest in nano- and microgrids. It is also of use to advanced students, and to engineers working in utilities.
Demand response (DR) describes controlled changes in the power consumption of an electric load to better match the power demand with the supply. This helps with increasing the share of intermittent renewables like solar and wind, thus ensuring use of the generated clean power and reducing the need for storage capacity. This book conveys the principles, implementation and applications of demand response. Chapters cover an overview of industrial DR strategies, cybersecurity, DR of industrial customers, price-based demand response, EV, transactive energy, DR with residential appliances, use of machine learning and neural networks, measurement and verification, and case studies in the Aran Islands, as well as a use case of AI and NN in energy consumption markets. The chapters have been written by an international team of highly qualified experts from academia as well as industry, ensuring a balanced and practically oriented insight. Readers will be able to develop and apply DR strategies to their respective systems. Industrial Demand Response: Methods, best practices, case studies, and applications is a valuable resource for researchers involved with regional as well as industrial power systems, power system engineers, experts at grid operators and advanced students.
Coordination of Distributed Energy Resources in Microgrids: Optimisation, control, and hardware-in-the-loop validation provides a structured overview of research into techniques for managing microgrids with distributed energy resources (DERs). The DERs including distributed generators, energy storage systems, and flexible loads are posing both challenges and opportunities to microgrids' security, planning, operation, and control. Advanced operation and control techniques are needed to coordinate these components in the microgrids and maintain power quality, as well as keeping the system economically feasible. This book is for researchers and students in the area of smart grids, power engineering, and control engineering, as well as for advanced students, transmission network and grid operators. It focuses on cutting-edge techniques for secure, economic, and robust operation and control of microgrids. Effective coordination of DERs on both temporal and spatial scales are introduced in detail. Topics covered include comprehensive mathematical models of DERs and microgrids, sizing and siting of DERs under uncertainties, stochastic and robust optimisation for active and reactive power dispatch of DERs in microgrids, distributed coordinated control, and hardware-in-the-loop tests for validation of control algorithms.
Low-voltage equipment is designed for handling low voltages at consumer-level. This includes computing and telecommunications systems, power distribution grids and PV systems, and EV charging facilities. Exposure to sudden high voltage surges, for example, from switching or lightning, can damage or destroy low-voltage equipment. Protection of low-voltage equipment and systems from such phenomena is thus vital for human safety as well as preventing damages, and so understanding the processes and protective countermeasures is of great importance. This book offers a systematic and thorough treatise of the topic for researchers in industry and universities as well as utility experts and advanced students and more generally for all people involved in electromagnetic compatibility or designing surge protection systems and lightning protection systems. The book aims to provide answers to all readers' questions from the simplest to the most complicated, including guidance on the application of surge protective devices (SPD) illustrated by many cases studies. Following an introduction, chapters cover lightning and surges, risk assessment, standard environment, surge protection (surge protective components and surge protective devices), and their applications, new trends and unsolved challenges.
With the integration of more distributed or aggregated renewables, and the wide utilization of power electronic devices, modern power systems are facing new stability and security challenges, such as the weakly damped oscillation caused by wind farms connected through long distance transmission lines, the frequency stability problem induced by the reduction of inertia and the voltage stability issue resulting from the interactions between transmission systems and dynamic loads. Meanwhile, synchronized phasor measurement technology developed very fast in the last decade, and more phasor measurement units (PMUs) and wide area measurement systems (WAMSs) have been deployed. These provide more insights into the system dynamics and approaches to overcoming the new challenges. This book addresses the emerging concepts, methodologies and applications of wide area monitoring, control and protection in power systems with integrated large scale renewables. Chapters cover monitoring, modelling and validation, control, and data mining with an emphasis on synchrophasor technology, and experiences with real power grids.
Accurate knowledge of electromagnetic power system transients is crucial to the operation of an economic, efficient and environmentally friendly power systems network without compromising on the reliability and quality of electrical power supply. Electromagnetic transient (EMT) simulation has therefore become a universal tool for the analysis of power system electromagnetic transients in the range of nanoseconds to seconds, and is the backbone for the design and planning of power systems, as well as for the investigation of problems. In this fully revised and updated new edition of this classic book, a thorough review of EMT simulation is provided, with many simple examples included to clarify difficult concepts. Topics covered include analysis of continuous and discrete systems; state variable analysis; numerical integrator substitution; the root-matching method; transmission lines and cables; transformers and rotating plant; control and protection; power electronic systems; frequency-dependent network equivalents; steady-state assessment; mixed time-frame simulation; transient simulation in real-time; and applications.
Power Systems Modelling and Fault Analysis: Theory and Practice, Second Edition, focuses on the important core areas and technical skills required for practicing electrical power engineers. Providing a comprehensive and practical treatment of the modeling of electrical power systems, the book offers students and professionals the theory and practice of fault analysis of power systems, covering detailed and advanced theories and modern industry practices. The book describes relevant advances in the industry, such as international standards developments and new generation technologies, such as wind turbine generators, fault current limiters, multi-phase fault analysis, the measurement of equipment parameters, probabilistic short-circuit analysis, and more.
Lightning is important for all scientists and engineers involved with electric installations. It is gaining further relevance since climate warming is causing an increase in lightning strikes, and since the rising numbers of renewable power generators, the electricity grid, and charging infrastructure are susceptible to lightning damage. This is the second edition to this comprehensive work. Both volumes have been thoroughly revised and updated for this second edition. Volume 1 treats lightning return stroke modelling and lightning electromagnetic radiation, and Volume 2 addresses electrical processes and effects. Chapter coverage includes various models and simulations of lightning strokes, measurements of lightning-generated EM fields, HF, VHF and microwave radiation, and lightning location systems; atmospheric discharge processes, lightning strikes to grounded structures and towers, EM field propagation, interaction with cables, effects on power transmission and distribution systems, effects in the ionosphere, mesosphere and magnetosphere, as well as NOx generation and climate effects. The volumes provide the rules and procedures to combine the readers' understanding with a model of every lightning-related electromagnetic process, and their effects and interactions. Readers obtain first-hand experience through simulations of the EM field of thunderclouds and lightning flashes and their effects. These volumes are a valuable resource for researchers and engineers in the areas of electrical engineering and physics involved in the fields of electromagnetic compatibility, lightning protection, renewable energy systems, smart grids, and lightning physics, as well as for professionals from telecommunication companies and manufacturers of power equipment, and advanced students.
Electric power systems have become much more complex in the past years, due to the integration of distributed generation including renewable energy sources and the challenges caused by intermittency of renewables. This complexity makes power systems potentially more vulnerable. However, use of computer-based protection methods (i.e., digital protection relays) supported by communication technology have helped in protecting electrical networks from faults to which they are subjected to. This second edition of the book covers a comprehensive introduction to the protection of electrical power systems using digital protective relays. The new edition offers a thorough revision and update, and comprehensive additional material. Chapters treat the mathematical background of protection algorithms including, sinusoidal-wave-based algorithms, Walsh function and S-Transform-based techniques, least squares and differential equation-based techniques, travelling wave-based protection, protection of transformers, digital line differential protection, a comparison between digital protection algorithms, and importantly, protection of networks with distributed generation including renewable energy resources. The book is written for researchers in electrical engineering and power engineering, in industry, utilities and universities, and for advanced students. The treatment is logically structured, covering mathematics and principles for the development and implementation of the major algorithms underlying different protection techniques. These techniques can be applied to protection of generator transformers, lines, switchgear and cable circuits: the main components of transmission and distribution systems with and without integrated distributed energy sources including renewables.
Lightning is important for all scientists and engineers involved with electric installations. It is gaining further relevance since climate warming is causing an increase in lightning strikes, and since the rising numbers of renewable power generators, the electricity grid, and charging infrastructure are susceptible to lightning damage. This is the second edition to this comprehensive work. Both volumes have been thoroughly revised and updated for this second edition. Volume 1 treats lightning return stroke modelling and lightning electromagnetic radiation, and Volume 2 addresses electrical processes and effects. Chapter coverage includes various models and simulations of lightning strokes, measurements of lightning-generated EM fields, HF, VHF and microwave radiation, and lightning location systems; atmospheric discharge processes, lightning strikes to grounded structures and towers, EM field propagation, interaction with cables, effects on power transmission and distribution systems, effects in the ionosphere, mesosphere and magnetosphere, as well as NOx generation and climate effects. The volumes provide the rules and procedures to combine the readers' understanding with a model of every lightning-related electromagnetic process, and their effects and interactions. Readers obtain first-hand experience through simulations of the EM field of thunderclouds and lightning flashes and their effects. These volumes are a valuable resource for researchers and engineers in the areas of electrical engineering and physics involved in the fields of electromagnetic compatibility, lightning protection, renewable energy systems, smart grids, and lightning physics, as well as for professionals from telecommunication companies and manufacturers of power equipment, and advanced students.
Power systems are becoming increasingly complex, handling rising shares of distributed intermittent renewable generation, EV charging stations, and storage. To ensure power availability and quality, the grid needs to be monitored as a whole, by wide area monitoring (WAM), not just in small sections separately. Parameter oscillations need to be detected and acted upon. This requires sensors, data assimilation and visualization, comparison with models, modelling, and system architectures for different grid types. This hands-on reference for researchers in power systems, professionals at grid operators and grid equipment manufacturers, as well as for advanced students, offers a comprehensive treatment of advanced data-driven signal processing techniques for the analysis and characterization of system data and transient oscillations in power grids. Algorithms and examples help readers understand the material. Challenges involved in realistic monitoring, visualization, and analysis of actual disturbance events are emphasized. Chapters in this second edition cover WAM and analysis systems, WAM system architectures, modelling of power system dynamic processes, data processing and feature extraction, multi-sensor multitemporal data fusion, WAM of power systems with high penetration of distributed generation, distributed wide-area oscillation monitoring, near real-time analysis and monitoring, and interpretation and visualization of wide-area PMU measurements.
Condition monitoring of engineering plants has increased in importance as engineering processes have become increasingly automated. However, electrical machinery usually receives attention only at infrequent intervals when the plant or the electricity generator is shut down. The economics of industry have been changing, placing ever more emphasis on the importance of reliable operation of the plants. Electronics and software in instrumentation, computers, and digital signal processors have improved our ability to analyse machinery online. Condition monitoring is now being applied to a range of systems from fault-tolerant drives of a few hundred watts to machinery of a few hundred MW in major plants. This book covers a large range of machines and their condition monitoring. This 3rd edition builds on the 2nd edition through a major revision, update of chapters and a comprehensive list of references & standards. Permanent magnet, switched reluctance and other types of machines are now covered, as well as variable speed drive machines and off-line techniques. Contents cover an introduction to condition monitoring; rotating electrical machines; electrical machine construction, operation and failure modes; reliability of machines and typical failure rates; signal processing and instrumentation requirements; on-line temperature monitoring; on-line chemical monitoring; on-line vibration monitoring; on-line current, flux and power monitoring; on-line partial discharge (PD) electrical monitoring; on-line variable speed drive machine monitoring; off-line monitoring; condition-based maintenance and asset management; application of artificial intelligence techniques to CM; and safety, training and qualification.
Unregulated distributed energy sources such as solar roofs and windmills and electric vehicle requirements for intermittent battery charging are variable sources either of electricity generation or demand. These sources impose additional intermittent load on conventional electric power systems. As a result thermal power plants whose generation is absolutely essential for any power system are increasingly being used for cycling operations thus increasing greenhouse gas emissions and electricity cost. The use of secondary energy storage might be a solution. Various technologies for storing electric energy are available; besides electrochemical ones such as batteries, there are mechanical, chemical and thermal means, all with their own advantages and disadvantages regarding scale, efficiency, cost, and other parameters. This classic book is a trusted source of information and a comprehensive guide to the various types of secondary storage systems and choice of their types and parameters. It is also an introduction to the multidisciplinary problem of distributed energy storage integration in an electric power system comprising renewable energy sources and electric car battery swap and charging stations. The 3rd edition has been thoroughly revised, expanded and updated. All given data has been updated, and chapters have been added that review different types of renewables and consider the possibilities arising from integrating a combination of different storage technologies into a system. Coverage of distributed energy storage, smart grids, and EV charging has been included and additional examples have been provided. The book is chiefly aimed at students of electrical and power engineering and design and research engineers concerned with the logistics of power supply. It will also be valuable to general public seeking to develop environmentally sound energy resources.
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants provides researchers in academia and industry with an essential overview of the stronger high-temperature materials required for key process components, such as membrane wall tubes, high-pressure steam piping and headers, superheater tubes, forged rotors, cast components, and bolting and blading for steam turbines in USC power plants. Advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels, are also addressed. Chapters on international research directions complete the volume. The transition from conventional subcritical to supercritical thermal power plants greatly increased power generation efficiency. Now the introductions of the ultra-supercritical (USC) and, in the near future, advanced ultra-supercritical (A-USC) designs are further efforts to reduce fossil fuel consumption in power plants and the associated carbon dioxide emissions. The higher operating temperatures and pressures found in these new plant types, however, necessitate the use of advanced materials.
Plant life management (PLiM) is a methodology focussed on the safety-first management of nuclear power plants over their entire lifetime. It incorporates and builds upon the usual periodic safety reviews and licence renewals as part of an overall framework designed to assist plant operators and regulators in assessing the operating conditions of a nuclear power plant, and establishing the technical and economic requirements for safe, long-term operation. Understanding and mitigating ageing in nuclear power plants critically reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC), along with their relevant analysis and mitigation paths, as well as reactor-type specific PLiM practices. Obsolescence and other less obvious ageing-related aspects in nuclear power plant operation are also examined in depth. Part one introduces the reader to the role of nuclear power in the global energy mix, and the importance and relevance of plant life management for the safety regulation and economics of nuclear power plants. Key ageing degradation mechanisms and their effects in nuclear power plant systems, structures and components are reviewed in part two, along with routes taken to characterise and analyse the ageing of materials and to mitigate or eliminate ageing degradation effects. Part three reviews analysis, monitoring and modelling techniques applicable to the study of nuclear power plant materials, as well as the application of advanced systems, structures and components in nuclear power plants. Finally, Part IV reviews the particular ageing degradation issues, plant designs, and application of plant life management (PLiM) practices in a range of commercial nuclear reactor types. With its distinguished international team of contributors, Understanding and mitigating ageing in nuclear power plants is a standard reference for all nuclear plant designers, operators, and nuclear safety and materials professionals and researchers.
The Smart Grid security ecosystem is complex and multi-disciplinary, and relatively under-researched compared to the traditional information and network security disciplines. While the Smart Grid has provided increased efficiencies in monitoring power usage, directing power supplies to serve peak power needs and improving efficiency of power delivery, the Smart Grid has also opened the way for information security breaches and other types of security breaches. Potential threats range from meter manipulation to directed, high-impact attacks on critical infrastructure that could bring down regional or national power grids. It is essential that security measures are put in place to ensure that the Smart Grid does not succumb to these threats and to safeguard this critical infrastructure at all times. Dr. Florian Skopik is one of the leading researchers in Smart Grid security, having organized and led research consortia and panel discussions in this field. Smart Grid Security will provide the first truly holistic view of leading edge Smart Grid security research. This book does not focus on vendor-specific solutions, instead providing a complete presentation of forward-looking research in all areas of Smart Grid security. The book will enable practitioners to learn about upcoming trends, scientists to share new directions in research, and government and industry decision-makers to prepare for major strategic decisions regarding implementation of Smart Grid technology.
The UK model of incentive regulation of power grids was at one time the most advanced, and elements of it were adopted throughout the EU. This model worked well, particularly in the context of limited investment and innovation, a single and strong regulatory authority, and limited coordination between foreign grid operators. This enlightening book demonstrates how the landscape has changed markedly since 2010 and that regulation has had to work hard to catch up and evolve. As the EU enters a wave of investment and an era of new services and innovation, this has created growing tensions between national regulatory authorities in terms of coordinating technical standards and distribution systems. This is being played out against an increasingly disruptive backdrop of digitization, new market platforms and novel business models. Electricity Network Regulation in the EU adopts a truly European approach to the complex issues surrounding the topic, focusing on the grey areas and critical questions that have traditionally been difficult to answer. Incentive regulation and grids are addressed simultaneously at the theoretical and practical level, providing the reader with fundamental concepts and concrete examples. This timely book is an invaluable read for energy practitioners working in utility companies, regulators and other public bodies. It will also appeal to academics involved in the world of electricity regulation. The book utilizes language that would make it suitable for interdisciplinary students, including engineering and law scholars. Contributors include: P. Bhagwat, J.-M. Glachant, S.Y. Hadush, L. Meeus, V. Rious, N. Rossetto, T. Schittekatte
Smart technology has significantly enhanced the efficient management of electric power supply systems. Despite the benefits of these advances, the complexity of such systems has proven to be difficult for testing purposes. Smart Grid Test Bed Using OPNET and Power Line Communication: Emerging Research and Opportunities presents an innovative perspective on the design, development, and implementation of an expandable test bed for smart grid applications. Highlighting pertinent topics such as intrusion detection, user interface, and performance evaluation, this book is an ideal reference source for researchers, academics, engineers, students, and professionals interested in the latest advancements for smart grid technologies.
Smart grids with distributed clean energy generation, storage and prosumers are the future of energy systems. They need two-way digital communication between multiple customers and suppliers of energy, to produce, buy and sell electricity to the grid at small scales. These arrangements need a system that maintains, checks, and registers information about transactions. Blockchain technology is able to handle these requirements with smart contracts, peer-to-peer energy trading and immutable transactions. A blockchain is a digital ledger of transactions that can be accessed across the entire network of computer systems. Combined with sensors to track energy flows, blockchain can enable the smart grid. After an introduction to blockchain, chapters cover integration with IoT, IoT- and blockchain-enabled smart grids, use of sensors, security and privacy, use of machine and deep learning, energy storage and transaction, as well as use of cryptocurrencies for transactions. Written by an international team with the necessary multi-disciplinarity, this work for researchers in power systems as well as economists with related interests covers the use of blockchain technology for smart grids. |
![]() ![]() You may like...
Cyber Security for Microgrids
Subham Sahoo, Frede Blaabjerg, …
Hardcover
Recent Advances in Power Systems…
Om Hari Gupta, Vijay Kumar Sood
Hardcover
R2,979
Discovery Miles 29 790
Power Line Communication Systems for…
Ivan R.S. Casella, Alagan Anpalagan
Hardcover
Electromagnetic Transients in Large HV…
Akihiro Ametani, Haoyan Xue, …
Hardcover
Proceedings of PURPLE MOUNTAIN FORUM…
Yusheng Xue, Yuping Zheng, …
Hardcover
R7,798
Discovery Miles 77 980
Metaheuristics Algorithms in Power…
Erik Cuevas, Emilio Barocio Espejo, …
Hardcover
R2,887
Discovery Miles 28 870
Metaheuristic Optimization in Power…
Jordan Radosavljevic
Hardcover
|