![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
This book provides knowledge into the intelligence and security areas of smart-city paradigms. It focuses on connected computing devices, mechanical and digital machines, objects, and/or people that are provided with unique identifiers. The authors discuss the ability to transmit data over a wireless network without requiring human-to-human or human-to-computer interaction via secure/intelligent methods. The authors also provide a strong foundation for researchers to advance further in the assessment domain of these topics in the IoT era. The aim of this book is hence to focus on both the design and implementation aspects of the intelligence and security approaches in smart city applications that are enabled and supported by the IoT paradigms. Presents research related to cognitive computing and secured telecommunication paradigms; Discusses development of intelligent outdoor monitoring systems via wireless sensing technologies; With contributions from researchers, scientists, engineers and practitioners in telecommunication and smart cities.
This book presents original, peer-reviewed research papers from the 4th Purple Mountain Forum -International Forum on Smart Grid Protection and Control (PMF2019-SGPC), held in Nanjing, China on August 17-18, 2019. Addressing the latest research hotspots in the power industry, such as renewable energy integration, flexible interconnection of large scale power grids, integrated energy system, and cyber physical power systems, the papers share the latest research findings and practical application examples of the new theories, methodologies and algorithms in these areas. As such book a valuable reference for researchers, engineers, and university students.
This book presents essential methods and tools for research into the reliability of energy systems. It describes in detail the content setting, formalisation, and use of algorithms for assessing the reliability of modern, large, and complex electric power systems. The book uses a wealth of tables and illustrations to represent results and source information in a clear manner. It discusses the main operating conditions which affect the reliability of electric power systems, and describes corresponding computing tools which can help solve issues as they arise. Further, all methodologies presented here are demonstrated in numerical examples. Though primarily intended for researchers and practitioners in the field of electric power systems, the book will also benefit general readers interested in this area.
This book is the first of its kind to comprehensively describe the principles of demand response. This allows consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage in response to the grid reliability need, time-based rates or other forms of financial incentives. The main contents of the book include modeling of demand response resources, incentive design, scheduling and dispatch algorithms, and impacts on grid operation and planning. Through case studies and illustrative examples, the authors highlight and compare the advantages, disadvantages and benefits that demand response can have on grid operations and electricity market efficiency. First book of its kind to introduce the principles of demand response; Combines theory with real-world applications useful for both professionals and academic researchers; Covers demand response in the context of power system applications.
This book presents research results of PowerWeb, TU Delft's consortium for interdisciplinary research on intelligent, integrated energy systems and their role in markets and institutions. In operation since 2012, it acts as a host and information platform for a growing number of projects, ranging from single PhD student projects up to large integrated and international research programs. The group acts in an inter-faculty fashion and brings together experts from electrical engineering, computer science, mathematics, mechanical engineering, technology and policy management, control engineering, civil engineering, architecture, aerospace engineering, and industrial design. The interdisciplinary projects of PowerWeb are typically associated with either of three problem domains: Grid Technology, Intelligence and Society. PowerWeb is not limited to electricity: it bridges heat, gas, and other types of energy with markets, industrial processes, transport, and the built environment, serving as a singular entry point for industry to the University's knowledge. Via its Industry Advisory Board, a steady link to business owners, manufacturers, and energy system operators is provided.
This volume consists of selected essays by participants of the workshop Control at Large Scales: Energy Markets and Responsive Grids held at the Institute for Mathematics and its Applications, Minneapolis, Minnesota, U.S.A. from May 9-13, 2016. The workshop brought together a diverse group of experts to discuss current and future challenges in energy markets and controls, along with potential solutions. The volume includes chapters on significant challenges in the design of markets and incentives, integration of renewable energy and energy storage, risk management and resilience, and distributed and multi-scale optimization and control. Contributors include leading experts from academia and industry in power systems and markets as well as control science and engineering. This volume will be of use to experts and newcomers interested in all aspects of the challenges facing the creation of a more sustainable electricity infrastructure, in areas such as distributed and stochastic optimization and control, stability theory, economics, policy, and financial mathematics, as well as in all aspects of power system operation.
This book consolidates some of the most promising advanced smart grid functionalities and provides a comprehensive set of guidelines for their implementation/evaluation using DIgSILENT Power Factory. It includes specific aspects of modeling, simulation and analysis, for example wide-area monitoring, visualization and control, dynamic capability rating, real-time load measurement and management, interfaces and co-simulation for modeling and simulation of hybrid systems. It also presents key advanced features of modeling and automation of calculations using PowerFactory, such as the use of domain-specific (DSL) and DIgSILENT Programming (DPL) languages, and utilizes a variety of methodologies including theoretical explanations, practical examples and guidelines. Providing a concise compilation of significant outcomes by experienced users and developers of this program, it is a valuable resource for postgraduate students and engineers working in power-system operation and planning.
This book provides a hybrid approach to fault detection and diagnostics. It presents a detailed analysis related to practical applications of the fault detection and diagnostics framework, and highlights recent findings on power plant nonlinear model identification and fault diagnostics. The effectiveness of the methods presented is tested using data acquired from actual cogeneration and cooling plants (CCPs). The models presented were developed by applying Neuro-Fuzzy (NF) methods. The book offers a valuable resource for researchers and practicing engineers alike.
This book provides readers with an in-depth discussion of circuit simulation, combining basic electrical engineering circuit theory with Python programming. It fills an information gap by describing the development of Python Power Electronics, an open-source software for simulating circuits, and demonstrating its use in a sample circuit. Unlike typical books on circuit theory that describe how circuits can be solved mathematically, followed by examples of simulating circuits using specific, commercial software, this book has a different approach and focus. The author begins by describing every aspect of the open-source software, in the context of non-linear power electronic circuits, as a foundation for aspiring or practicing engineers to embark on further development of open source software for different purposes. By demonstrating explicitly the operation of the software through algorithms, this book brings together the fields of electrical engineering and software technology.
Halbleiter-Leistungsbauelemente sind das Kernstuck der Leistungselektronik. Sie bestimmen die Leistungsfahigkeit und machen neuartige und verlustarme Schaltungen erst moeglich. In dem Band wird neben den Halbleiter-Leistungsbauelementen selbst auch die Aufbau- und Verbindungstechnik behandelt: von den physikalischen Grundlagen und der Herstellungstechnologie uber einzelne Bauelemente bis zu thermomechanischen Problemen, Zerstoerungsmechanismen und Stoerungseffekten. Die 2., uberarbeitete Auflage berucksichtigt technische Neuerungen und Entwicklungen.
This thesis addresses a novel application of network modelling methodologies to power transformers. It develops a novel thermal model and compares its performance against that of a commercial computational fluid dynamics (CFD) code, as well as in experiments conducted in a dedicated setup built exclusively for this purpose. Hence, the thesis cross-links three of the most important aspects in high-quality research: model development, simulation and experimental validation. Network modelling is used to develop a tool to simulate the thermal performance of power transformers, widely acknowledged to be critical assets in electrical networks. After the strong de-regulation of electricity markets and de-carbonization of worldwide economies, electrical networks have been changing fast. Both asset owners and equipment manufacturers are being driven to develop increasingly accurate modelling capabilities in order to optimize either their operation or their design. Temperature is a critical parameter in every electric machine and power transformers are no exception. As such, the thesis is relevant for a wide range of stakeholders, from utilities to power transformer manufacturers, as well as researchers interested in the energy industry. It is written in straightforward language and employs a highly pedagogic approach, making it also suitable for non-experts.
This book reviews and examines how power system low-frequency power oscillations and sub-synchronous oscillations may be affected by grid connection of wind power generation. Grid connection of wind power generation affects the power system small-signal stability and has been one of the most actively pursued research subjects in power systems and power electronics engineering in the last ten years. This book is the first of its kind to cover the impact of wind power generation on power system low-frequency oscillations and sub-synchronous oscillations. It begins with a comprehensive overview of the subject and progresses to modeling of power systems and introduces the application of conventional methods, including damping torque analysis, modal analysis and frequency-domain analysis, presented with detailed examples, making it useful for researchers and engineers worldwide.
The book provides highly specialized researchers and practitioners with a major contribution to mathematical models' developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.
This book discusses a number of important topical technical and non-technical issues related to the global energy, environment and socio-economic developments for professionals and students directly and indirectly involved in the relevant fields. It shows how renewable energy offers solutions to mitigate energy demand and helps achieve a clean environment, and also addresses the lack of a clear vision in the development of technology and a policy to reach the mandatory global renewable energy targets to reduce greenhouse gas emissions and stimulate socio-economic development. The book is structured in such a way that it provides a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations; future technologies for power grids and their control, stability and reliability are also presented.
The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. "Electric Power Systems" has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this "Fifth Edition" has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now expanded to cover increasingly important topics like climate change and renewable power generation. Updated material includes an analysis of today's markets and an examination of the current economic state of power generation. The physical limits of power systems equipment - currently being tested by the huge demand for power - is explored, and greater attention is paid to power electronics, voltage source and power system components, amongst a host of other updates and revisions.Supplies an updated chapter on power system economics and management issues and extended coverage of power system components. Also expanded information on power electronics and voltage source, including VSC HVDC and FACTS. Updated to take into account the challenges posed by different world markets, and pays greater attention to up-to-date renewable power generation methods such as wind power. Includes modernized presentation and greater use of examples to appeal to today's students, also retains the end of chapter questions to assist with the learning process. Also shows students how to apply calculation techniques.
The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.
This book introduces readers to the fundamentals of the IEC 62559 Use Case Methodology, explains how it is related to the Smart Grid Architecture Model (SGAM), and details how a holistic view for both architecture and requirements engineering can be achieved. It describes a standardized and holistic approach to requirements engineering for smart grid projects based on work conducted in the context of the EU M/490 standardization mandate. Over the last years, this method has been established in Europe as the basic building block of requirements engineering in the utilities sector. The authors present a canonical, structured approach that users can apply to the Use Case Methodology and the SGAM, as well as open tools for this purpose. The application in various domains outside the smart grid is also discussed, as it can be used for critical infrastructures or system-of-systems domains like Industrie 4.0 and Ambient Assisted Living. Accordingly, the book also presents various architecture models for different fields of application, like EMAM, SCIAM, RAMI 4.0, and MAF.
This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based nonlinear control of IM, PMSM and DFIM. The book is useful for practitioners as well as development engineers and designers in the area of electrical drives and wind-power technology. It is a valuable resource for researchers and students.
This book is a collection of papers presented by renowned researchers, keynote speakers, and academicians in the International Conference on VLSI, Communication, Analog Designs, Signals & Systems and Networking (VCASAN-2013), organized by B.N.M. Institute of Technology, Bangalore, India during July 17-19, 2013. The book provides global trends in cutting-edge technologies in electronics and communication engineering. The content of the book is useful to engineers, researchers, and academicians as well as industry professionals.
This SpringerBrief discusses the rise of the smart grid from the perspective of computing and communications. It explains how current and next-generation network technology and methodologies help recognize the potential that the smart grid initiative promises. Chapters provide context on the smart grid before exploring specific challenges related to communication control and energy management. Topics include control in heterogeneous power supply, solutions for backhaul and wide area networks, home energy management systems, and technologies for smart energy management systems. Designed for researchers and professionals working on the smart grid, Communication Challenges and Solutions in the Smart Grid offers context and applications for the common issues of this developing technology. Advanced-level students interested in networking and communications engineering will also find the brief valuable.
This SpringerBrief provides an in-depth look at the key issues that affect the performance of heterogeneous networks and presents schemes that can effectively tackle these issues. In particular, this book discusses unbalanced traffic load among the macro and micro Base Stations (BSs) caused by the transmit power disparity, and a load-balancing based mobile association scheme to balance the traffic load among the macro and micro BSs. This book also introduces a fractional frequency reuse (FFR) scheme with proper power control to help reduce interference at the UEs which are most vulnerable to such intra-cell interference. The last section investigates radio resource allocation issues for heterogeneous networks with cooperative relays, and proposes a resource allocation framework that could achieve proportional fairness among the UEs. Numerical results are provided to demonstrate the effectiveness of the proposed solutions in tackling the problem and improving network performance. Resource Management for Heterogeneous Networks in LTE-A Systems is designed for researchers and professionals working in networking and resource management. The content is also valuable for advanced-level students in computer science and electrical engineering.
Covers the essential components, operation and protection of the electric power system in a single volume. Discusses how the system operation and components are protected from abnormal operation such as short circuits, and the generation, transmission and distribution of electrical power. Presents information on how electric power is transmitted (energy from generator to load), and provides insights into the nature of the electric utility business.
Manual calculations are still extensively used and in particular are necessary for checking and verifying various software calculation design packages. It is highly recommended that users of such software familiarise themselves with the rudiments of these calculations prior to using the software packages. This essential book fills the gap between software and manual calculations. It provides the reader with all the necessary tools to enable accurate calculations of circuit designs. Rather than complex equations, this book uses extensive worked examples to make understanding the calculations simpler. The focus on worked examples furnishes the reader with the knowledge to carry out the necessary checks to electrical cable sizing software programmes. Other key features include: Updated information on 230 volt references and voltage drop under normal load conditions New sections on buried cables that take into account soil thermal conductivity, trenches and grouping, allowing readers to carry out accurate cables sizing Information and examples of steel wired armour cables, new to this edition. This includes sufficiency during short circuits and, for cables with externally run CPCs, gives unique fault conditions. Covers calculations of cross-sectional areas of circuit live conductors Earth fault loop impedances Protective conductor cross-sectional areas and short circuit conditions Short circuit protection. The last chapter combines all of the calculations of the previous chapters to enable the reader to complete an accurate design of an installation circuit under all conditions. A unique tool for detailed electrical installation trade, "Electrical Installation Calculations, Fourth Edition" is invaluable to electricians, electrical designers, installers, technicians, contractors, and plant engineers. Senior electrical engineering students and technical colleges, junior engineers, and contracts managers will also find this text useful.
The Energy Return on Energy Invested (EROI or EROEI) is the
amount of energy acquired from a particular energy source divided
by the energy expended, or invested, in obtaining that energy. EROI
is an essential and seemingly simple measure of the usable energy
or energy profit from the exploitation of an energy source, but it
is not so easy to determine all of the energy expenditures that
should be included in the calculation. Because EROI values are
generally low for renewable energy sources, differences in these
estimates can lead to sharply divergent conclusions about the
viability of these energy technologies. This book presents the
first complete energy analysis of a large-scale, real-world
deployment of photovoltaic (PV) collection systems representing 3.5
GW of installed, grid-connected solar plants in Spain. The analysis
includes all of the factors that limit and adjust the real
electricity output through one full-year cycle, and all of the
fossil fuel inputs required to achieve these results. The authors
comprehensive analysis of energy inputs, which assigns energy cost
estimates to all financial expenditures, yields EROI values that
are less than half of those claimed by other investigators and by
the solar industry.Sensitivity analysis is used to test various
assumptions in deriving these EROI estimates. The results imply
that the EROI of current, large-scale PV systems may be too low to
seamlessly support an energy and economic transition away from
fossil fuels. Given thepervasiveness offossil fuel subsidies in the
modern economy, a key conclusion is that all components of the
system that brings solar power to the consumer, from manufacturing
to product maintenance and life cycle, must be improved in terms of
energy efficiency. The materials science of solar conversion
efficiency is only one such component. .Presents the first comprehensive study of the EROI of large-scale solar PV systems in a developed country .Uses real-world operational data rather than laboratory approximations and extrapolations .Describes the dependence of one alternative energy source on the goods and services of a fossil-fueled economy .Has global implications for the potential of renewable energy sources to replace dwindling reserves of fossil fuels .Written with the first-hand knowledge of the chief, on-site
engineer formany solar installations in Spain together with the
leader in the development and application of the concept of
EROI
This book is an all-in-one resource on the development and application of variable frequency transformers to power systems and smart grids. It introduces the main technical issues of variable frequency transformers (VFT) systematically, including its basic construction, theory equations, and simulation models. Readers will then gain an in-depth discussion of its control system, operation performance, low frequency power oscillation, and technical economics, before proceeding to practical implementation and future developments. The related concepts of energy revolution, third generation grids, and power system interconnection are discussed as well. The first, comprehensive introduction to variable frequency transformers (VFT) An in-depth look at the construction of VFT, with simulations and applications Demonstrates how to assess the control system and overall system performance Analyses future developments, energy revolution and power system interconnections Variable Frequency Transformers for Large Scale Power Systems is a timely overview of the state of the art for VFT as it is increasingly adopted in smart grids. It is intended for engineers and researchers specializing in power system planning and operation, as well as advanced students and industry professionals of power engineering. |
You may like...
Textiles and Clothing Sustainability…
Subramanian Senthilkannan Muthu
Hardcover
Effect of High-Pressure Technologies on…
Bruno Ricardo de Castro Leite Junior, Alline Artigiani Lima Tribst
Paperback
R3,447
Discovery Miles 34 470
Finite Elements and Fast Iterative…
Howard Elman, David Silvester, …
Hardcover
R4,317
Discovery Miles 43 170
|