![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
This volume covers the fundamentals of boiler systems and gathers hard-to-find facts and observations for designing, constructing and operating industrial power plants in the United States and overseas. It contains formulas and spreadsheets outlining combustion points of natural gas, oil and solid fuel beds. It also includes a boiler operator's training guide, maintenance examples, and a checklist for troubleshooting.
Modern power systems are highly complex due to increasing shares of intermittent renewable energy and distributed generation. Research requires computer simulation and modeling, and knowledge of methods and algorithms. This book presents key concepts of modeling and simulation of power systems. The book introduces the two main families of techniques for computer-based simulation of dynamic systems, and methods that allow parallel simulation execution. The coverage includes digital simulation, topological methods, state space methods, parallelization methods, simulation under uncertainty, phasor simulation, switching systems simulation as well as real-time simulation and hardware in the loop testing. Examples, exercises and a set of simulation solvers implemented in Matlab (R) and Python are also provided. Modeling and Simulation of Complex Power Systems is an invaluable tool for researchers in industry and academia, and advanced students.
An examination of how silt has a major impact on the operation of hydropower projects in terms of the silting of reservoirs, with particular reference to India where one-third of the Earth's silt material originates. An effort is made to raise awareness of silt issues in the minds of hydropower engineers, considering silting problems in hydropower projects on the Indian sub-continent. Also under discussion are environmental and economic aspects of silt management; reduction of silt by implementing ISO 1400 for hilly projects; technical treatments of reservoir sedimentation, desilting and its economic optimization, damage mechanisms and their analysis, and design criteria. Although this book considers the problem of silting from several viewpoints, it focuses on the design of hydropower plants in India.
Grid Integration and Dynamic Impact of Solar and Wind Energy details the integration of solar and wind energy resources to the electric grid worldwide. The book includes detailed coverage of the power converters and control used in interfacing solar photovoltaics, electric machines and power converters used in wind generators, and extensive descriptions of power systems operation and control to accommodate large penetration of these resources. Key concepts will be illustrated through extensive power electronics and power systems simulations using software like MATLAB and Simulink. The book addresses real world problems and solutions in the area of grid integration of solar and wind, and will be a valuable resource for engineers and researchers working in renewable energy and power.
Developing NoC based interconnect tailored to a particular application domain, satisfying the application performance constraints with minimum power-area overhead is a major challenge. With technology scaling, as the geometries of on-chip devices reach the physical limits of operation, another important design challenge for NoCs will be to provide dynamic (run-time) support against permanent and intermittent faults that can occur in the system. The purpose of Designing Reliable and Efficient Networks on Chips is to provide state-of-the-art methods to solve some of the most important and time-intensive problems encountered during NoC design.
This book provides the short history, current state, main problems and historical perspective for the development of electrical power engineering. The focus of the textbook is on the two most important issues related to meeting of the growing needs of humanity in electricity: "Hunger for energy" and "Ecological infarct". In the book are discussed the methods of their solution: optimization of energy balance, use of renewable energy resources, new methods of electricity production, increase of the efficiency of production, accumulation, transmission, distribution and consumption electricity. The third issue - social and geopolitical threats due to the increasing need for energy - in the textbook is not considered inasmuch it details in non-stop regime discussed in the mass media. Choosing the structure and content of the textbook is based on the ten years of the author experience of giving lectures to Tomsk Polytechnic University students who study according to the program Electric Power Engineering. This textbook is addresed to students, masters and post-graduates. It can be interesting for everyone who is thinking about the future of our civilization, in general, and meeting of human needs in electric power, in particular.
Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extension of adaptive filters, and adaptive filters are the basic building blocks in all change detectors.
In order to solve a particular motion control problem the engineer is initially faced with the task of selecting an appropriate power transmission medium. This is frequently followed by modelling and simulation of the proposed solution in concert with control system analysis and design. The process involves both synthesis and analysis and, in some instances, can be particularly challenging to the engineer. This text covers all aspects of this power transmisison and motion control with particular emphasis placed on current international research and development. This collection of papers should be of value to researchers and practitioners working in the power transmision and motion control community.
Provided in this book is a basic comprehensive treatment of the major electrical engineering problems associated with the design and operation of electric power systems. The major components of the power system are modeled in terms of their sequence (symmetrical component) equivalent circuits. It also provides a fundamental but thorough treatment of power flow, fault analysis, economic dispatch and transient stability in power systems.
A coherent, global vision of electric power systems Intended as both a basic text and general reference for a broad range of readers, Electric Power Systems: Analysis and Control offers a comprehensive and articulate treatment of both analysis and synthesis of power systems and their controls from a unique system perspective. The author gives special attention to operational planning, control, and modeling of the physical phenomena involved in electric power systems and provides schematic interpretations for each in order to give the reader a deeper understanding of their structure and a solid mastery of the problems associated with them. The book features thorough coverage of the subject, such as:
Highly relevant and timely in scope, the book is essential reading for anyone associated with electric power systems, including students and teachers of power engineering courses, professionals in the industry, consultants, and researchers.
This volume is a valuable, single source of information on the most common flow-induced vibration problems in power and process plant components. Based on the author's own experience that most errors in engineering analysis come from confusions in the units, the author begins with a short chapter on units and dimensions. He then provides step-by-step examples in dual US and SI units, leading to the final objective of design analysis, problem solving, diagnosis and trouble shooting in the following areas: fundamentals of vibration; acoustics and structural dynamics; vibration of structures in quiescent fluids; vortex-induced vibration; turbulence-induced vibration; impact, fatigue and wear caused by flow-induced vibration; acoustically induced vibration; and signal analysis and diagnostic techniques. Emphasis is placed on the physics of the phenomenon and most of the work examples can be solved with pocket calculators.
Power Plant Synthesis provides an integrated approach to the operation, analysis, simulation, and dimensioning of power plants for electricity and thermal energy production. Fundamental concepts of energy and power, energy conversion, and power plant design are first presented, and integrated approaches for the operation and simulation of conventional electricity production systems are then examined. Hybrid power plants and cogeneration systems are covered, with operating algorithms, optimization, and dimensioning methods explained. The environmental impacts of energy sources are described and compared, with real-life case studies included to show the synthesis of the specific topics covered.
AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial applications. Improvements in power semiconductor switches over recent years have resulted in the development of many structures of AC-AC converters without DC electric energy storage. Such converters are an alternative solution for frequently recommended systems with DC energy storage and are characterized by a lower price, smaller size and longer lifetime. Most of the these topologies are based on the structure of the matrix converter. "Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept" presents a review of power frequency converters, with special attention paid to converters without DC energy storage. Particular attention is paid to nine new converters named matrix-reactance frequency converters which have been developed by the author and the team of researchers from Institute of Electrical Engineering at the University of Zielona Gora. The topologies of the presented matrix-reactance frequency converters are based on a three-phase unipolar buck-boost matrix-reactance chopper with source or load switches arranged as in a matrix converter. This kind of approach makes it possible to obtain an output voltage greater than the input one (similar to that in a matrix-reactance chopper) and a frequency conversion (similar to that in a matrix converter). Written for researchers and Ph.D. students working in the field of power electronics converters and drive systems, "Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept "will also be valuable to" "power electronics converter designers and users; R&D centers; and readers needing industry solutions in variable speed drive systems, such as automation and aviation.
The liberalization process, tightening environmental standards and the need for replacing aged power plants force European utilities to optimize their future generation mix. Power plants are real assets and as a consequence the power plant park of a utility firm equals a portfolio of different generation assets. This thesis adds to the understanding how to identify an efficient generation portfolio through time by assuming a non-constant feasible set. According to our results a combination of conventional thermal and renewable energies turn out to be efficient in terms of expected value and risks. Therefore, implementing a strategy based on renewable energies which cause less CO2 per MWh generated electricity clearly pays off. Potential readership includes scholars from energy economics and energy finance as well as interested practitioners involved in these areas.
This book addresses different algorithms and applications based on the theory of multiobjective goal attainment optimization. In detail the authors show as the optimal asset of the energy hubs network which (i) meets the loads, (ii) minimizes the energy costs and (iii) assures a robust and reliable operation of the multicarrier energy network can be formalized by a nonlinear constrained multiobjective optimization problem. Since these design objectives conflict with each other, the solution of such the optimal energy flow problem hasn t got a unique solution and a suitable trade off between the objectives should be identified. A further contribution of the book consists in presenting real-world applications and results of the proposed methodologies developed by the authors in three research projects recently completed and characterized by actual implementation under an overall budget of about 23 million .
Design of Solar Thermal Power Plants introduces the basic design methods of solar thermal power plants for technicians engaged in solar thermal power generation engineering. This book includes the author's theoretical investigation and study findings in solar heat concentrators, a performance evaluation of solar thermal collectors, a numerical simulation of the heat transfer process between complex geometrics, heat transfer through radiation, and more. Containing theoretical descriptions of solar concentrators and receivers, practical engineering examples, and detailed descriptions of site selections for solar thermal power plants, this book has a strong theoretical and practical value for readers.
The changing structure of the electric utility industry has had a significant impact on power system design and operation. In particular, the incorporation of flexible a.c. transmission system (FACTS) devices and high voltage direct current (HVDC) links into conventional computational programs presents new challenges in power system modelling. Responding to these changes, Computer Modelling of Electrical Power Systems, Second Edition presents modern analysis tools for the design and improvement of power system performance.
The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB(R) in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB(R) simula-tion test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.
This book examines the role of model validation of power system planning and operation to optimize its performance in terms of frequency control. It presents the detailed model validation for the Iranian Power Grid system, where the frequency performance was analysed and improved using existing and new standard models to identify the influencing parameters. Although the model validation was employed for a specific, practical large-scale system, the framework (concepts, methods, and formulations) can be used for by any type of power system. As such, this book describing a generalized framework for model validation with a real case study is useful for both power industry experts and academia.
This book presents recent science and engineering research in the field of conventional and renewable energy, energy efficiency and optimization, discussing problems such as availability, peak load and reliability of sustainable supply for power to consumers. Such research is imperative since efficient and environmentally friendly solutions are critical in modern electricity production and transmission.
The book is a collection of high-quality, peer-reviewed innovative research papers from the International Conference on Signals, Machines and Automation (SIGMA 2018) held at Netaji Subhas Institute of Technology (NSIT), Delhi, India. The conference offered researchers from academic and industry the opportunity to present their original work and exchange ideas, information, techniques and applications in the field of computational intelligence, artificial intelligence and machine intelligence. The book is divided into two volumes discussing a wide variety of industrial, engineering and scientific applications of the emerging techniques.
Semiconductor power devices are the heart of power electronics. They determine the performance of power converters and allow topologies with high efficiency. Semiconductor properties, pn-junctions and the physical phenomena for understanding power devices are discussed in depth. Working principles of state-of-the-art power diodes, thyristors, MOSFETs and IGBTs are explained in detail, as well as key aspects of semiconductor device production technology. In practice, not only the semiconductor, but also the thermal and mechanical properties of packaging and interconnection technologies are essential to predict device behavior in circuits. Wear and aging mechanisms are identified and reliability analyses principles are developed. Unique information on destructive mechanisms, including typical failure pictures, allows assessment of the ruggedness of power devices. Also parasitic effects, such as device induced electromagnetic interference problems, are addressed. The book concludes with modern power electronic system integration techniques and trends.
This volume in the SpringerBriefs in Energy series offers a systematic review of unit commitment (UC) problems in electrical power generation. It updates texts written in the late 1990s and early 2000s by including the fundamentals of both UC and state-of-the-art modeling as well as solution algorithms and highlighting stochastic models and mixed-integer programming techniques. The UC problems are mostly formulated as mixed-integer linear programs, although there are many variants. A number of algorithms have been developed for, or applied to, UC problems, including dynamic programming, Lagrangian relaxation, general mixed-integer programming algorithms, and Benders decomposition. In addition the book discusses the recent trends in solving UC problems, especially stochastic programming models, and advanced techniques to handle large numbers of integer- decision variables due to scenario propagation
This book introduces the optimal online charging control of electric vehicles (EVs) and battery energy storage systems (BESSs) in smart grids. The ultimate goal is to minimize the total energy cost as well as reduce the fluctuation of the total power flow caused by the integration of the EVs and renewable energy generators. Using both theoretic analysis and data-driven numerical results, the authors reveal the effectiveness and efficiency of the proposed control techniques. A major benefit of these control techniques is their practicality, since they do not rely on any non-causal knowledge of future information. Researchers, operators of power grids, and EV users will find this to be an exceptional resource. It is also suitable for advanced-level students of computer science interested in networks, electric vehicles, and energy systems.
The book introduces an original and effective method for the analysis of peak-to-peak output current ripple amplitude in three-phase two-level inverters. It shows that the method can be extended to both multiphase inverters, with particular emphasis on five-phase and seven-phase inverters, and multilevel ones, with particular emphasis on three-level inverters, and provides, therefore, a comparison among different number of output phases and voltage levels. The work reported on here represents the first detailed analysis of the peak-to-peak output current ripple. It makes an important step toward future developments in the field of high-power generation, and in grid-connected and motor-load systems. |
You may like...
Chi-Squared Data Analysis and Model…
Carey Witkov, Keith Zengel
Hardcover
R1,556
Discovery Miles 15 560
Sustainable Construction and Building…
Bibhuti Bhusan Das, Narayanan Neithalath
Hardcover
R5,341
Discovery Miles 53 410
Mathematical Cardiac Electrophysiology
Piero Colli Franzone, Luca Franco Pavarino, …
Paperback
R3,705
Discovery Miles 37 050
|