![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
This is a student supplement associated with:
This book presents selected contributions to the NATO Advanced Research Workshop "Carbon Nanomaterials in Clean Energy Hydrogen Systems" held in June 2010. These original papers reflect recent progress in response to the modern-day requirements in chemistry of carbon nanomaterials and metal-hydrogen systems. Successor to the 2008 proceedings, this second volume focuses on research and application studies of materials capable of interacting actively with hydrogen, also addressing questions of hydrogen accumulation and storage. As a whole, it provides a review of the most relevant areas of hydrogen materials interactions and carbon nanomaterials science, making it invaluable for all researchers, physicists, chemists, post-graduates and young scientists interested in the structure, properties and applications of different nanocarbon materials.
Power System Small Signal Stability Analysis and Control, Second Edition analyzes severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. This fully revised edition addresses the continued expansion of power systems and the rapid upgrade to smart grid technologies that call for the implementation of robust and optimal controls. With a new chapter on MATLAB programs, this book describes how the application of power system damping controllers such as Power System Stabilizers and Flexible Alternating Current Transmission System controllers-namely Static Var Compensator and Thyristor Controlled Series Compensator -can guard against system disruptions. Detailed mathematical derivations, illustrated case studies, the application of soft computation techniques, designs of robust controllers, and end-of-chapter exercises make it a useful resource to researchers, practicing engineers, and post-graduates in electrical engineering.
Over the last century, energy storage systems (ESSs) have continued to evolve and adapt to changing energy requirements and technological advances. Energy Storage in Power Systems describes the essential principles needed to understand the role of ESSs in modern electrical power systems, highlighting their application for the grid integration of renewable-based generation. Key features: * Defines the basis of electrical power systems, characterized by a high and increasing penetration of renewable-based generation. * Describes the fundamentals, main characteristics and components of energy storage technologies, with an emphasis on electrical energy storage types. * Contains real examples depicting the application of energy storage systems in the power system. * Features case studies with and without solutions on modelling, simulation and optimization techniques. Although primarily targeted at researchers and senior graduate students, Energy Storage in Power Systems is also highly useful to scientists and engineers wanting to gain an introduction to the field of energy storage and more specifically its application to modern power systems.
This book describes the history and development of marine power plant. Problems of arrangement, general construction and parameters of marine power plants of all types are considered. It also introduces different characteristics of each type of marine power plant, matching characteristic for diesel propulsion. The book gives a clear idea about different marine power engines, including working principle, structure and application. Readers will understand easily the power system for ships since there are a lot of illustrations and instructions for each of the equipment. This book is useful for students majoring in "marine engineering", "energy and power engineering" and other related majors. It is also useful for operators of marine institution for learning main design and operation of ship plants.
The devices described in "Advanced MOS-Gated Thyristor Concepts" are utilized in microelectronics production equipment, in power transmission equipment, and for very high power motor control in electric trains, steel-mills, etc. Advanced concepts that enable improving the performance of power thyristors are discussed here, along with devices with blocking voltage capabilities of 5,000-V, 10,000-V and 15,000-V. Throughout the book, analytical models are generated to allow a simple analysis of the structures and to obtain insight into the underlying physics. The results of two-dimensional simulations are provided to corroborate the analytical models and give greater insight into the device operation.
covers all parameters of power systems operation, utilization, and control applies MATLAB gradually throughout the book includes practice problems that test readers' comprehension and reinforce key concepts includes thoroughly worked examples at the end of every section to give readers a solid grasp of the solutions
This volume covers the fundamentals of boiler systems and gathers hard-to-find facts and observations for designing, constructing and operating industrial power plants in the United States and overseas. It contains formulas and spreadsheets outlining combustion points of natural gas, oil and solid fuel beds. It also includes a boiler operator's training guide, maintenance examples, and a checklist for troubleshooting.
The latest advances in turbomachinery design and technology Turbocharging and Air Management Systems features a collection of papers presented at the 1998 Imeche Conference. Contributions by global industry-leading centers of excellence, this book examines the latest advances and details the goals of current projects. Topics include computer-aided turbomachinery system design, meanline prediction of traditional turbine efficiency, turbocharger design challenges, and more, bringing readers up to date on the state of the field and directions for future work.
An examination of how silt has a major impact on the operation of hydropower projects in terms of the silting of reservoirs, with particular reference to India where one-third of the Earth's silt material originates. An effort is made to raise awareness of silt issues in the minds of hydropower engineers, considering silting problems in hydropower projects on the Indian sub-continent. Also under discussion are environmental and economic aspects of silt management; reduction of silt by implementing ISO 1400 for hilly projects; technical treatments of reservoir sedimentation, desilting and its economic optimization, damage mechanisms and their analysis, and design criteria. Although this book considers the problem of silting from several viewpoints, it focuses on the design of hydropower plants in India.
This book presents select proceedings of Electric Power and Renewable Energy Conference 2020 (EPREC 2020). This book provides rigorous discussions, case studies, and recent developments in the emerging areas of the power system, especially, renewable energy conversion systems, distributed generations, microgrid, smart grid, HVDC & FACTS, power system protection, etc. The readers would be benefited in terms of enhancing their knowledge and skills in the domain areas. The book will be a valuable reference for beginners, researchers, and professionals interested in developments in the power system.
The development of electric power systems has been made up of incremental innovations from the end of the 19th century and throughout the 20th century. The creation of deregulated electricity markets has brought about an emerging paradigm in which the relationships between producers, power system operators and consumers have changed enormously compared to the monopolistic case. The scope of this book is to provide fundamental concepts of the physics and operation of transmission and distribution lines, which is the content of Part 1, followed by the models and tools for the description and simulation of large electrical grids for steady state and transient operation. These advanced tools allow the physics and technology of power systems to be described and the algorithms of Ybus and Zbus matrices to be built for various studies such as short-circuit studies and load flow or transient phenomena analysis. Part 3 deals with the new organization concepts in the frame of deregulated markets. In this part the restructuring of the power industry is presented where various actors interact together through market places or bilateral contracts. In addition, the operation of the power grids under this deregulated context is detailed and the relationships between power system operators and market actors (energy producers and providers, traders, etc.) is explained with several examples. The ancillary services, congestion management and grid access concepts are also described. A large number of exercises and problems disseminated throughout the book with solutions at the end enable the reader to check his understanding of the content at any time.
Grid Integration and Dynamic Impact of Solar and Wind Energy details the integration of solar and wind energy resources to the electric grid worldwide. The book includes detailed coverage of the power converters and control used in interfacing solar photovoltaics, electric machines and power converters used in wind generators, and extensive descriptions of power systems operation and control to accommodate large penetration of these resources. Key concepts will be illustrated through extensive power electronics and power systems simulations using software like MATLAB and Simulink. The book addresses real world problems and solutions in the area of grid integration of solar and wind, and will be a valuable resource for engineers and researchers working in renewable energy and power.
Future of Utilities - Utilities of the Future: How technological innovations in distributed generation will reshape the electric power sector relates the latest information on the electric power sector its rapid transformation, particularly on the distribution network and customer side. Trends like the rapid rise of self-generation and distributed generation, microgrids, demand response, the dissemination of electric vehicles and zero-net energy buildings that promise to turn many consumers into prosumers are discussed. The book brings together authors from industry and academic backgrounds to present their original, cutting-edge and thought-provoking ideas on the challenges currently faced by electric utilities around the globe, the opportunities they present, and what the future might hold for both traditional players and new entrants to the sector. The book's first part lays out the present scenario, with concepts such as an integrated grid, microgrids, self-generation, customer-centric service, and pricing, while the second part focuses on how innovation, policy, regulation, and pricing models may come together to form a new electrical sector, exploring the reconfiguring of the current institutions, new rates design in light of changes to retail electricity markets and energy efficiency, and the cost and benefits of integration of distributed or intermittent generation, including coupling local renewable energy generation with electric vehicle fleets. The final section projects the future function and role of existing electrical utilities and newcomers to this sector, looking at new pathways for business and pricing models, consumer relations, technology, and innovation.
This book presents a wide range of optimization methods and their applications to various electrical power system problems such as economical load dispatch, demand supply management in microgrids, levelized energy pricing, load frequency control and congestion management, and reactive power management in radial distribution systems. Problems related to electrical power systems are often highly complex due to the massive dimensions, nonlinearity, non-convexity and discontinuity associated with objective functions. These systems also have a large number of equality and inequality constraints, which give rise to optimization problems that are difficult to solve using classical numerical methods. In this regard, nature inspired optimization algorithms offer an effective alternative, due to their ease of use, population-based parallel search mechanism, non-dependence on the nature of the problem, and ability to accommodate non-differentiable, non-convex problems. The analytical model of nature inspired techniques mimics the natural behaviors and intelligence of life forms. These techniques are mainly based on evolution, swarm intelligence, ecology, human intelligence and physical science.
State estimation is a key function for real-time operation and control of electrical power systems since its role is to provide a complete, coherent, and reliable network real-time model used to set up other real-time operation and control functions. In recent years it has extended its applications to monitoring active distribution networks with distributed energy resources. The inputs of a conventional state estimator are a redundant collection of real-time measurement, load and production forecasts and a mathematical model that relates these measurements to the complex nodal voltages, which are taken as the state variables of the system. The goal of state estimation is to adjust models so that they are closer to observed values and deliver better forecasts. In power systems, this is key to maintaining power quality and operating generation and storage units well. This book, written by international authors from industry and universities, systematically addresses state estimation in power distribution systems. Chapters convey techniques for distribution system state estimation, such as classical methods, three-phase network modelling, power flow calculation, fast decoupled approaches and their new application via complex per unit normalization, the Bayesian method, and multiarea state estimation. Also, synchronized and non-synchronized measurements with different sample rates, real-time monitoring, and practical experiences of distribution state estimation are covered. Researchers involved with electrical power and electrical distribution systems, professionals working in utilities, advanced students and PhD students will find this work essential reading.
This book presents intuitive explanations of the principles of microgrids, including their structure and operation and their applications. It also discusses the latest research on microgrid control and protection technologies and the essentials of microgrids as well as enhanced communication systems. The book provides solutions to microgrid operation and planning issues using various methodologies including planning and modelling; AC and DC hybrid microgrids; energy storage systems in microgrids; and optimal microgrid operational planning. Written by specialists, it is filled in innovative solutions and research related to microgrid operation, making it a valuable resource for those interested in developing updated approaches in electric power analysis, design and operational strategies. Thanks to its in-depth explanations and clear, three-part structure, it is useful for electrical engineering students, researchers and technicians.
This book discusses novel methods for planning and coordinating converters when an existing point-to-point (PtP) HVDC link is expanded into a multi-terminal HVDC (MTDC) system. It demonstrates that expanding an existing PtP HVDC link is the best way to build an MTDC system, and is especially a better option than the build-from-scratch approach in cases where several voltage-sourced converter (VSC) HVDC links are already in operation. The book reports in detail on the approaches used to estimate the new steady-state operation limits of the expanded system and examines the factors influencing them, revealing new operation limits in the process. Further, the book explains how to coordinate the converters to stay within the limits after there has been a disturbance in the system. In closing, it describes the current DC grid control concept, including how to implement it in an MTDC system, and introduces a new DC grid control layer, the primary control interface (IFC).
This book provides a clear, systematic and exhaustive exposition of the various dimensions of electrical power systems, both at basic and advanced levels, explained and illustrated through solved examples. This book covers: fundamentals of power systems, line constant calculations and performance of overhead lines; mechanical design of lines, HVDC lines, corona, insulators and insulated cables; voltage control, neutral grounding and transients in power systems; fault calculation, protective relays including digital relays and circuit breakers; power systems synchronous stability and voltage stability; insulation coordination and over voltage protection; modern topics like load flows, economic load dispatch, load frequency control and compensation in power system; state estimation in power systems, unit commitment, economic scheduling of hydrothermal plants and optimal power flows; and zbus formulation, power transformers and synchronous machines as power system elements. It includes large number of solved examples, practice problems and multiple choice questions. With all these features, this is an invaluable textbook for undergraduate electrical engineering students and practicing engineers.
Most textbooks that deal with the power analysis of electrical engineering power systems focus on generation or distribution systems. Filling a gap in the literature, Modern Power System Analysis, Second Edition introduces readers to electric power systems, with an emphasis on key topics in modern power transmission engineering. Throughout, the book familiarizes readers with concepts and issues relevant to the power utility industry. A Classroom-Tested Power Engineering Text That Focuses on Power Transmission Drawing on the author's industry experience and more than 42 years teaching courses in electrical machines and electric power engineering, this book explains the material clearly and in sufficient detail, supported by extensive numerical examples and illustrations. New terms are defined when they are first introduced, and a wealth of end-of-chapter problems reinforce the information presented in each chapter. Topics covered include: Power system planning Transmission line parameters and the steady-state performance of transmission lines Disturbance of system components Symmetrical components and sequence impedances Analysis of balanced and unbalanced faults-including shunt, series, and simultaneous faults Transmission line protection Load-flow analysis Designed for senior undergraduate and graduate students as a two-semester or condensed one-semester text, this classroom-tested book can also be used for self-study. In addition, the detailed explanations and useful appendices make this updated second edition a handy reference for practicing power engineers in the electrical power utility industry. What's New in This Edition 35 percent new material Updated and expanded material throughout Topics on transmission line structure and equipment Coverage of overhead and underground power transmission Expanded discussion and examples on power flow and substation design Extended impedance tables and expanded coverage of per unit systems in the appendices New appendix containing additional solved problems using MATLAB (R) New glossary of modern power system analysis terminology
Provided in this book is a basic comprehensive treatment of the major electrical engineering problems associated with the design and operation of electric power systems. The major components of the power system are modeled in terms of their sequence (symmetrical component) equivalent circuits. It also provides a fundamental but thorough treatment of power flow, fault analysis, economic dispatch and transient stability in power systems.
Power Plant Synthesis provides an integrated approach to the operation, analysis, simulation, and dimensioning of power plants for electricity and thermal energy production. Fundamental concepts of energy and power, energy conversion, and power plant design are first presented, and integrated approaches for the operation and simulation of conventional electricity production systems are then examined. Hybrid power plants and cogeneration systems are covered, with operating algorithms, optimization, and dimensioning methods explained. The environmental impacts of energy sources are described and compared, with real-life case studies included to show the synthesis of the specific topics covered.
This volume consists of selected essays by participants of the workshop Control at Large Scales: Energy Markets and Responsive Grids held at the Institute for Mathematics and its Applications, Minneapolis, Minnesota, U.S.A. from May 9-13, 2016. The workshop brought together a diverse group of experts to discuss current and future challenges in energy markets and controls, along with potential solutions. The volume includes chapters on significant challenges in the design of markets and incentives, integration of renewable energy and energy storage, risk management and resilience, and distributed and multi-scale optimization and control. Contributors include leading experts from academia and industry in power systems and markets as well as control science and engineering. This volume will be of use to experts and newcomers interested in all aspects of the challenges facing the creation of a more sustainable electricity infrastructure, in areas such as distributed and stochastic optimization and control, stability theory, economics, policy, and financial mathematics, as well as in all aspects of power system operation.
This thesis addresses a novel application of network modelling methodologies to power transformers. It develops a novel thermal model and compares its performance against that of a commercial computational fluid dynamics (CFD) code, as well as in experiments conducted in a dedicated setup built exclusively for this purpose. Hence, the thesis cross-links three of the most important aspects in high-quality research: model development, simulation and experimental validation. Network modelling is used to develop a tool to simulate the thermal performance of power transformers, widely acknowledged to be critical assets in electrical networks. After the strong de-regulation of electricity markets and de-carbonization of worldwide economies, electrical networks have been changing fast. Both asset owners and equipment manufacturers are being driven to develop increasingly accurate modelling capabilities in order to optimize either their operation or their design. Temperature is a critical parameter in every electric machine and power transformers are no exception. As such, the thesis is relevant for a wide range of stakeholders, from utilities to power transformer manufacturers, as well as researchers interested in the energy industry. It is written in straightforward language and employs a highly pedagogic approach, making it also suitable for non-experts.
Halbleiter-Leistungsbauelemente sind das Kernstuck der Leistungselektronik. Sie bestimmen die Leistungsfahigkeit und machen neuartige und verlustarme Schaltungen erst moeglich. In dem Band wird neben den Halbleiter-Leistungsbauelementen selbst auch die Aufbau- und Verbindungstechnik behandelt: von den physikalischen Grundlagen und der Herstellungstechnologie uber einzelne Bauelemente bis zu thermomechanischen Problemen, Zerstoerungsmechanismen und Stoerungseffekten. Die 2., uberarbeitete Auflage berucksichtigt technische Neuerungen und Entwicklungen. |
![]() ![]() You may like...
Distributed Generation Systems - Design…
Gevork B. Gharehpetian, Mohammad Mousavi
Paperback
R2,746
Discovery Miles 27 460
Renewable Energy and the Environment
Md. Rabiul Islam, Naruttam Kumar Roy, …
Hardcover
R2,970
Discovery Miles 29 700
Monitoring and Control using…
Innocent Kamwa, Chao Lu, …
Hardcover
Power Electronic Control in Electrical…
Enrique Acha, Vassilios Agelidis, …
Hardcover
R3,211
Discovery Miles 32 110
Electricity Network Regulation in the EU…
Leonardo Meeus, Jean-Michel Glachant
Hardcover
R2,911
Discovery Miles 29 110
Materials for Ultra-Supercritical and…
Augusto Di Gianfrancesco
Hardcover
Metaheuristics Algorithms in Power…
Erik Cuevas, Emilio Barocio Espejo, …
Hardcover
R2,941
Discovery Miles 29 410
|