![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
This book consolidates some of the most promising advanced smart grid functionalities and provides a comprehensive set of guidelines for their implementation/evaluation using DIgSILENT Power Factory. It includes specific aspects of modeling, simulation and analysis, for example wide-area monitoring, visualization and control, dynamic capability rating, real-time load measurement and management, interfaces and co-simulation for modeling and simulation of hybrid systems. It also presents key advanced features of modeling and automation of calculations using PowerFactory, such as the use of domain-specific (DSL) and DIgSILENT Programming (DPL) languages, and utilizes a variety of methodologies including theoretical explanations, practical examples and guidelines. Providing a concise compilation of significant outcomes by experienced users and developers of this program, it is a valuable resource for postgraduate students and engineers working in power-system operation and planning.
This book provides a hybrid approach to fault detection and diagnostics. It presents a detailed analysis related to practical applications of the fault detection and diagnostics framework, and highlights recent findings on power plant nonlinear model identification and fault diagnostics. The effectiveness of the methods presented is tested using data acquired from actual cogeneration and cooling plants (CCPs). The models presented were developed by applying Neuro-Fuzzy (NF) methods. The book offers a valuable resource for researchers and practicing engineers alike.
The liberalization process, tightening environmental standards and the need for replacing aged power plants force European utilities to optimize their future generation mix. Power plants are real assets and as a consequence the power plant park of a utility firm equals a portfolio of different generation assets. This thesis adds to the understanding how to identify an efficient generation portfolio through time by assuming a non-constant feasible set. According to our results a combination of conventional thermal and renewable energies turn out to be efficient in terms of expected value and risks. Therefore, implementing a strategy based on renewable energies which cause less CO2 per MWh generated electricity clearly pays off. Potential readership includes scholars from energy economics and energy finance as well as interested practitioners involved in these areas.
The book provides highly specialized researchers and practitioners with a major contribution to mathematical models' developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.
This book reviews and examines how power system low-frequency power oscillations and sub-synchronous oscillations may be affected by grid connection of wind power generation. Grid connection of wind power generation affects the power system small-signal stability and has been one of the most actively pursued research subjects in power systems and power electronics engineering in the last ten years. This book is the first of its kind to cover the impact of wind power generation on power system low-frequency oscillations and sub-synchronous oscillations. It begins with a comprehensive overview of the subject and progresses to modeling of power systems and introduces the application of conventional methods, including damping torque analysis, modal analysis and frequency-domain analysis, presented with detailed examples, making it useful for researchers and engineers worldwide.
This book discusses a number of important topical technical and non-technical issues related to the global energy, environment and socio-economic developments for professionals and students directly and indirectly involved in the relevant fields. It shows how renewable energy offers solutions to mitigate energy demand and helps achieve a clean environment, and also addresses the lack of a clear vision in the development of technology and a policy to reach the mandatory global renewable energy targets to reduce greenhouse gas emissions and stimulate socio-economic development. The book is structured in such a way that it provides a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations; future technologies for power grids and their control, stability and reliability are also presented.
The book is a collection of high-quality, peer-reviewed innovative research papers from the International Conference on Signals, Machines and Automation (SIGMA 2018) held at Netaji Subhas Institute of Technology (NSIT), Delhi, India. The conference offered researchers from academic and industry the opportunity to present their original work and exchange ideas, information, techniques and applications in the field of computational intelligence, artificial intelligence and machine intelligence. The book is divided into two volumes discussing a wide variety of industrial, engineering and scientific applications of the emerging techniques.
This book examines the role of model validation of power system planning and operation to optimize its performance in terms of frequency control. It presents the detailed model validation for the Iranian Power Grid system, where the frequency performance was analysed and improved using existing and new standard models to identify the influencing parameters. Although the model validation was employed for a specific, practical large-scale system, the framework (concepts, methods, and formulations) can be used for by any type of power system. As such, this book describing a generalized framework for model validation with a real case study is useful for both power industry experts and academia.
Halbleiter-Leistungsbauelemente sind das Kernstuck der Leistungselektronik. Sie bestimmen die Leistungsfahigkeit und machen neuartige und verlustarme Schaltungen erst moeglich. In dem Band wird neben den Halbleiter-Leistungsbauelementen selbst auch die Aufbau- und Verbindungstechnik behandelt: von den physikalischen Grundlagen und der Herstellungstechnologie uber einzelne Bauelemente bis zu thermomechanischen Problemen, Zerstoerungsmechanismen und Stoerungseffekten. Die 2., uberarbeitete Auflage berucksichtigt technische Neuerungen und Entwicklungen.
This book provides readers with an in-depth discussion of circuit simulation, combining basic electrical engineering circuit theory with Python programming. It fills an information gap by describing the development of Python Power Electronics, an open-source software for simulating circuits, and demonstrating its use in a sample circuit. Unlike typical books on circuit theory that describe how circuits can be solved mathematically, followed by examples of simulating circuits using specific, commercial software, this book has a different approach and focus. The author begins by describing every aspect of the open-source software, in the context of non-linear power electronic circuits, as a foundation for aspiring or practicing engineers to embark on further development of open source software for different purposes. By demonstrating explicitly the operation of the software through algorithms, this book brings together the fields of electrical engineering and software technology.
This book addresses different algorithms and applications based on the theory of multiobjective goal attainment optimization. In detail the authors show as the optimal asset of the energy hubs network which (i) meets the loads, (ii) minimizes the energy costs and (iii) assures a robust and reliable operation of the multicarrier energy network can be formalized by a nonlinear constrained multiobjective optimization problem. Since these design objectives conflict with each other, the solution of such the optimal energy flow problem hasn t got a unique solution and a suitable trade off between the objectives should be identified. A further contribution of the book consists in presenting real-world applications and results of the proposed methodologies developed by the authors in three research projects recently completed and characterized by actual implementation under an overall budget of about 23 million .
The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB(R) in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB(R) simula-tion test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.
The changing structure of the electric utility industry has had a significant impact on power system design and operation. In particular, the incorporation of flexible a.c. transmission system (FACTS) devices and high voltage direct current (HVDC) links into conventional computational programs presents new challenges in power system modelling. Responding to these changes, Computer Modelling of Electrical Power Systems, Second Edition presents modern analysis tools for the design and improvement of power system performance.
This book presents cutting-edge perspectives and research results in smart energy spanning multiple disciplines across four main topics: smart metering, smart grid modeling, control and optimization, and smart grid communications and networking. Chapters from an international panel of experts in the field cover: privacy-preserving data aggregation in smart metering systems; smart price-based scheduling of flexible residential appliances; smart tariffs for demand response from smart metering platforms; decentralized models for real-time renewable integration in future grid; distributed and decentralized control in future power systems; multiobjective optimization for smart grid system design; frequency regulation of smart grid via dynamic demand control and battery energy storage systems; distributed frequency control and demand-side management; game theory approaches for demand side management in the smart grid; energy storage systems and grid integration; overview of research in the ADVANTAGE project; big data analysis of power grid from random matrix theory; a model-driven evaluation of demand response communication protocols for smart grid; energy efficient smart grid communications; and cyber security of smart grid state estimation.
This book presents recent science and engineering research in the field of conventional and renewable energy, energy efficiency and optimization, discussing problems such as availability, peak load and reliability of sustainable supply for power to consumers. Such research is imperative since efficient and environmentally friendly solutions are critical in modern electricity production and transmission.
Semiconductor power devices are the heart of power electronics. They determine the performance of power converters and allow topologies with high efficiency. Semiconductor properties, pn-junctions and the physical phenomena for understanding power devices are discussed in depth. Working principles of state-of-the-art power diodes, thyristors, MOSFETs and IGBTs are explained in detail, as well as key aspects of semiconductor device production technology. In practice, not only the semiconductor, but also the thermal and mechanical properties of packaging and interconnection technologies are essential to predict device behavior in circuits. Wear and aging mechanisms are identified and reliability analyses principles are developed. Unique information on destructive mechanisms, including typical failure pictures, allows assessment of the ruggedness of power devices. Also parasitic effects, such as device induced electromagnetic interference problems, are addressed. The book concludes with modern power electronic system integration techniques and trends.
This volume in the SpringerBriefs in Energy series offers a systematic review of unit commitment (UC) problems in electrical power generation. It updates texts written in the late 1990s and early 2000s by including the fundamentals of both UC and state-of-the-art modeling as well as solution algorithms and highlighting stochastic models and mixed-integer programming techniques. The UC problems are mostly formulated as mixed-integer linear programs, although there are many variants. A number of algorithms have been developed for, or applied to, UC problems, including dynamic programming, Lagrangian relaxation, general mixed-integer programming algorithms, and Benders decomposition. In addition the book discusses the recent trends in solving UC problems, especially stochastic programming models, and advanced techniques to handle large numbers of integer- decision variables due to scenario propagation
This book introduces the optimal online charging control of electric vehicles (EVs) and battery energy storage systems (BESSs) in smart grids. The ultimate goal is to minimize the total energy cost as well as reduce the fluctuation of the total power flow caused by the integration of the EVs and renewable energy generators. Using both theoretic analysis and data-driven numerical results, the authors reveal the effectiveness and efficiency of the proposed control techniques. A major benefit of these control techniques is their practicality, since they do not rely on any non-causal knowledge of future information. Researchers, operators of power grids, and EV users will find this to be an exceptional resource. It is also suitable for advanced-level students of computer science interested in networks, electric vehicles, and energy systems.
The book introduces an original and effective method for the analysis of peak-to-peak output current ripple amplitude in three-phase two-level inverters. It shows that the method can be extended to both multiphase inverters, with particular emphasis on five-phase and seven-phase inverters, and multilevel ones, with particular emphasis on three-level inverters, and provides, therefore, a comparison among different number of output phases and voltage levels. The work reported on here represents the first detailed analysis of the peak-to-peak output current ripple. It makes an important step toward future developments in the field of high-power generation, and in grid-connected and motor-load systems.
This book addresses the use, operation and maintenance of new renewable energy systems, taking into account their integration in the current electrical markets and in the new emergent uses of energy. The book is based on practical experiences which present different perspectives about what occurs once an energy production plant based on sources of renewable energy is in production. Questions to be addressed include: how the energy produced is integrated into the current system of energy production, what is its consideration in the electrical market, what the impact is on society, how differential the strategies of operation and maintenance are with respect to conventional systems of energy production, etc.
Over the past decades, fault diagnosis (FDI) and fault tolerant control strategies (FTC) have been proposed based on different techniques for linear and nonlinear systems. Indeed a considerable attention is deployed in order to cope with diverse damages resulting in faults occurrence.
This pioneering volume has been updated and enriched to reflect the state-of-the-art in blackout prediction and prevention. It documents and explains background and algorithmic aspects of the most successful steady-state, transient and voltage stability solutions available today in real-time. It also describes new, cutting-edge stability applications of synchrophasor technology, and captures industry acceptance of metrics and visualization tools that quantify and monitor the distance to instability. Expert contributors review a broad spectrum of additionally available techniques, such as trajectory sensitivities, ensuring this volume remains the definitive resource for industry practitioners and academic researchers in this critical area of power system operations.
This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategies bridge the gap between advantageous robust controls and traditional power system design, and are supplemented by real-time simulations. The impacts of low inertia and damping effect on system frequency in the presence of increased distributed and renewable penetration are given particular consideration, as the bulk synchronous machines of conventional frequency control are rendered ineffective in emerging grid environments where distributed/variable units with little or no rotating mass become dominant. Frequency stability and control issues relevant to the exciting new field of microgrids are also undertaken in this new edition. As frequency control becomes increasingly significant in the design of ever-more complex power systems, this expert guide ensures engineers are prepared to deploy smart grids with optimal functionality.
The work in this thesis proposes the innovative use of modern technologies and mathematical techniques to analyse and control future power systems. It exploits new enabling technologies such as Voltage Source Converter High Voltage Direct Current (VSC-HVDC) lines, both single and multi-terminal, and Wide Area Measurement Systems (WAMS) to reduce the risks of instability associated with greater utilisation of modern power systems. New control systems for these technologies have been analysed, and subsequently designed, using advanced probabilistic analysis techniques to ensure that they are robust to the variable and turbulent conditions expected in the future. The advanced probabilistic techniques used in the thesis for both system analysis and controller design represent one of the first such applications in open literature.
This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based nonlinear control of IM, PMSM and DFIM. The book is useful for practitioners as well as development engineers and designers in the area of electrical drives and wind-power technology. It is a valuable resource for researchers and students. |
![]() ![]() You may like...
Barbour's Bruce and its Cultural…
Steven Boardman, Susan Foran
Hardcover
R3,274
Discovery Miles 32 740
Advances in Complex Geometry
Yanir A Rubinstein, Bernard Shiffman
Paperback
R3,523
Discovery Miles 35 230
Household Chemicals and Emergency First…
Jack L. Weddell, Rosemary S. J. Happell, …
Paperback
R2,075
Discovery Miles 20 750
|