Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
This book presents the state-of-the-art methods and procedures necessary for operating a power system. It takes into account the theoretical investigations and practical considerations of the modern electrical power system. It highlights in a systematic way the following sections: Power Sector Scenario in India, Distribution Planning and Optimization, Best practices in Operation & Maintenance of Sub-Transmission & Distribution Lines, Best Practices in Operation and Maintenance of Distribution Substation Equipment's and Auxiliaries, Best Practice in Operation & Maintenance of Transformer and Protection Systems, International Best Practices in Operation & Maintenance (Advanced Gadgets), Aerial Bunch Conductor (ABC) based Distribution System, Best Practices in Operation & Maintenance of Energy Meters.
This book reviews and examines how power system low-frequency power oscillations and sub-synchronous oscillations may be affected by grid connection of wind power generation. Grid connection of wind power generation affects the power system small-signal stability and has been one of the most actively pursued research subjects in power systems and power electronics engineering in the last ten years. This book is the first of its kind to cover the impact of wind power generation on power system low-frequency oscillations and sub-synchronous oscillations. It begins with a comprehensive overview of the subject and progresses to modeling of power systems and introduces the application of conventional methods, including damping torque analysis, modal analysis and frequency-domain analysis, presented with detailed examples, making it useful for researchers and engineers worldwide.
This book builds on the cutting edge research presented in the previous edition that was the first of its kind to present the technology behind an emerging power systems management tool still in the early stages of commercial roll-out. In the intervening years, synchrophasors have become a crucial and widely adopted tool in the battle against electricity grid failures around the world. Still the most accurate wide area measurement (WAMS) technology for power systems, synchronized phasor measurements have become increasingly sophisticated and useful for system monitoring, as the advent of big data storage allows for more nuanced real-time analysis, allowing operators to predict, prevent and mitigate the impacts of blackouts with enhanced accuracy and effectiveness. This new edition continues to provide the most encompassing overview of the technology from its pioneers, and has been expanded and updated to include all the applications and optimizations of the last decade.
This book is for all those who are looking for a non-conventional mathematical model of electrical network systems. It presents a modern approach using linear algebra and derives various commonly unknown quantities and interrelations of network analysis. It also explores some applications of algebraic network model of and solves some examples of previously unsolved network problems in planning and operation of network systems. Complex mathematical aspects are illustrated and described in a way that is understandable for non-mathematicians. Discussing interesting concepts and practically useful methods of network analysis, it is a valuable resource for lecturers, students, engineers
Series-parallel conversion systems, in which multiple standardized converter modules are connected in series or parallel at the input and output sides, to meet the demands of various applications. This book focuses on the control strategies for the series-parallel conversion systems with DC-DC converters and DC-AC inverters as the basic modules, respectively, to achieve input voltage/current sharing and output voltage/current sharing among the constituent modules. The detailed theoretical analysis with design examples and experimental validations are presented. This book is essential and valuable reference for graduate students and academics majoring in power electronics and engineers engaged in developing DC-DC converters, DC-AC inverters and power electronics transformers.
This book provides a hybrid approach to fault detection and diagnostics. It presents a detailed analysis related to practical applications of the fault detection and diagnostics framework, and highlights recent findings on power plant nonlinear model identification and fault diagnostics. The effectiveness of the methods presented is tested using data acquired from actual cogeneration and cooling plants (CCPs). The models presented were developed by applying Neuro-Fuzzy (NF) methods. The book offers a valuable resource for researchers and practicing engineers alike.
The new edition of this book incorporates the recent remarkable changes in electric power generation, transmission and distribution. The consequences of the latest development to High Voltage (HV) test and measuring techniques result in new chapters on Partial Discharge measurements, Measurements of Dielectric Properties, and some new thoughts on the Shannon Theorem and Impuls current measurements. This standard reference of the international high-voltage community combines high voltage engineering with HV testing techniques and HV measuring methods. Based on long-term experience gained by the authors the book reflects the state of the art as well as the future trends in testing and diagnostics of HV equipment. It ensures a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.
This fully updated textbook provides complete coverage of electrical circuits and introduces students to the field of energy conversion technologies, analysis and design. Chapters are designed to equip students with necessary background material in such topics as devices, switching circuit analysis techniques, converter types, and methods of conversion. The book contains a large number of examples, exercises, and problems to help enforce the material presented in each chapter. A detailed discussion of resonant and softswitching dc-to-dc converters is included along with the addition of new chapters covering digital control, non-linear control, and micro-inverters for power electronics applications. Designed for senior undergraduate and graduate electrical engineering students, this book provides students with the ability to analyze and design power electronic circuits used in various industrial applications.
This book reports on various techniques for fault location on cross bonded cables, identifies the best method and describes the construction of a full fault locator system. The developed system is able of pinpointing the fault location on long cross-bonded cable systems and will be installed in Danish substations for monitoring the coming cable-based transmission grid. The work was conducted as part of a collaborative project between the department of energy technology at Aalborg University and the Danish transmission system operator for electricity and natural gas, Energinet.dk.
The book will be useful for those who are interested in Power Systems, Control Systems and Electrical Machines, especially Synchronous machines. It provides comprehensive and in-depth information on Dynamics and Transient Stability aspects. The books covers Power Systems Modeling, Application of Frequency Domain, Time Domain Techniques and Lyapunov Direct Method for Analysis of Dynamical Behaviour of Power Systems subjected to small and large disturbances. The application of techniques has been stressed rather than description of the theoretical basis of these techniques. Several illustrative examples have been presented wherever necessary.
In this monograph the authors solve the modern scientific problems connected with A.C. motors and generators, based first on the detailed consideration of their physical phenomena. The authors describe the theory and investigative methods they developed and applied in practice, which are considered to be of essential interest for specialists in the field of the electrical engineering industry in European countries, the USA, Argentina, and Brazil, as well as in such countries as India, China, and Iran. This book will be of interest to engineers specialized in the field of the manufacture, operation, and repair of A.C. machines (motors and generators) as well as electric drives; to professors, lecturers, and post-graduate students of technical universities, who are specializing in the field of electric machine engineering and electric drives; and to students who are engaged in the field of high current techniques, electric drives, and electric machine engineering.
This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields-electric vehicles, wind- and wave-energy converters and robotics, among them-will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters-resistance, inertia, and so on-encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer-controller schemes based on backstepping and sliding-mode techniques are described. Experimental results validate the performance of these observer and controller configurations with test trajectories of significance in difficult sensorless-AC-machine problems. Control engineers working with AC motors in a variety of industrial environments will find the space-and-cost-saving ideas detailed in Sensorless AC Electric Motor Control of much interest. Academic researchers and graduate students from electrical, mechanical and control-engineering backgrounds will be able to see how advanced theoretical control can be applied in meaningful real systems.
This book discusses the challenges in the convergence of technologies as the Internet of Things (IoT) evolves. These include sensing, computing, information processing, networking, and controlling intelligent technologies. The contributors first provide a survey of various assessment and evaluation approaches available for successful convergence. They then go on to cover several operational ideas to apply. The contributors then discuss the challenges involved bridging gaps in computation and the communication process, hidden networks, intelligent decision making, human-to-machine perception and large-scale IoT environments. The contributors aim to provide the reader an overview of trends in IoT in terms of performability and traffic modeling and efforts that can be spent in assessing the graceful degradation in IoT paradigms. Provides a survey of IoT assessment and evaluation approaches; Covers new and innovative operational ideas that apply to the IoT industry and the industries it affects; Includes chapters from researchers and industry leaders in IoT from around the world.
This book presents a cross-disciplinary approach to smart grids, offering an invaluable basis for understanding their complexity and potential, and for discussing their technical, legal, economic, societal, psychological and security aspects. Smart grids are a complex phenomenon involving new, active roles for consumers and prosumers, novel social, political and cultural practices, advanced ICT, new markets, security of supply issues, the informational turn in energy, valuation of assets and investments, technological innovation and (de)regulation. Furthermore, smart grids offer new interfaces, in turn creating hybrid fields: with the increasing use of electric vehicles and electric transportation, smart grids represent the crossroads of energy and mobility. While the aim is to achieve more sustainable production, transportation and use of energy, the importance of smart grids actually has less to do with electricity, heat or gas, and far more with transforming the infrastructure needed to deliver energy, as well as the roles of its owners, operators and users. The immediate goal is to contribute positively to a sustainable world society. The chapters are revised and expanded texts based upon lectures delivered at the Groningen Energy Summer School 2014. Questions for further discussion at the end of each chapter highlight the key themes that emerge. The book offers an indispensable resource for researchers, professionals and companies in the power supply industry, and for students seeking to broaden and deepen their understanding of smart grids.
The work in this thesis proposes the innovative use of modern technologies and mathematical techniques to analyse and control future power systems. It exploits new enabling technologies such as Voltage Source Converter High Voltage Direct Current (VSC-HVDC) lines, both single and multi-terminal, and Wide Area Measurement Systems (WAMS) to reduce the risks of instability associated with greater utilisation of modern power systems. New control systems for these technologies have been analysed, and subsequently designed, using advanced probabilistic analysis techniques to ensure that they are robust to the variable and turbulent conditions expected in the future.The advanced probabilistic techniques used in the thesis for both system analysis and controller design represent one of the first such applications in open literature.
This book describes the history and development of marine power plant. Problems of arrangement, general construction and parameters of marine power plants of all types are considered. It also introduces different characteristics of each type of marine power plant, matching characteristic for diesel propulsion. The book gives a clear idea about different marine power engines, including working principle, structure and application. Readers will understand easily the power system for ships since there are a lot of illustrations and instructions for each of the equipment. This book is useful for students majoring in "marine engineering", "energy and power engineering" and other related majors. It is also useful for operators of marine institution for learning main design and operation of ship plants.
This book provides a detailed review of power amplifiers, including classes and topologies rarely covered in books, and supplies sufficient information to allow the reader to design an entire amplifier system, and not just the power amplification stage. A central aim is to furnish readers with ideas on how to simplify the design process for a preferred power amplifier stage by introducing software-based routines in a programming language of their choice. The book is in two parts, the first focusing on power amplifier theory and the second on EDA concepts. Readers will gain enough knowledge of RF and microwave transmission theory, principles of active and passive device design and manufacturing, and power amplifier design concepts to allow them to quickly create their own programs, which will help to accelerate the transceiver design process. All circuit designers facing the challenge of designing an RF or microwave power amplifier for frequencies from 2 to 18 GHz will find this book to be a valuable asset.
This thesis documents almost twenty years of the author's work on the development and implementation of a new approach to holistic community development in remote and disadvantaged villages in Nepal. It describes the theoretical basis of the work, the main research activities, and the practical outcomes of the implemented programs. One of the fundamental cornerstones of holistic community development is the provision of appropriate and sustainable solutions for the long-term development of local communities. This requires that people's own identified needs be recognized and addressed in partnership with them in holistic ways. The author explains the many synergies that result from this holistic approach to community development. Another cornerstone of his approach is to utilise the communities' locally available renewable resources for long-term sustainable development. One of the key findings of the thesis is that improved access to energy services, such as cooking with a smokeless metal stove in a clean indoor environment, basic indoor lighting, and increased food production and safe food storage (through a greenhouse and a solar drier respectively), need to be at the very heart of any long-term holistic community development project. The thesis demonstrates that tapping into locally available renewable energy resources and converting them, through contextualized and locally manufactured renewable energy technologies, has a central role in long-term holistic community development programs. Such programs are successful because they provide both appropriate technologies and life-changing experiences for the local users involved.
This book reports on cutting-edge findings regarding harmonic stability assessment for offshore wind power plants (OWPPs). It presents a timely investigation of the harmonic stability interaction between OWPPs on the one hand, and associated control systems in the wind turbines and other power electronic devices in the transmission system on the other. The book particularly focuses on voltage-sourced converter high-voltage direct current (VSC-HVDC) and static compensator (STATCOM) systems. From a practical perspective, the book reports on appropriate models for power electronic devices. It describes how the frequency domain evaluation approach can be assessed by comparing results obtained with the Nyquist stability criterion against the more detailed electromagnetic transient based model realized in the PSCAD/EMTDC simulation program. The book also provides a concise yet complete overview of large OWPPs that incorporate power electronic devices on a broad scale, and highlights selected challenges and opportunities in the context of real-world applications.
The book introduces the fundamentals of fluid-mechanics, momentum theories, vortex theories and vortex methods necessary for the study of rotors aerodynamics and wind-turbines aerodynamics in particular. Rotor theories are presented in a great level of details at the beginning of the book. These theories include: the blade element theory, the Kutta-Joukowski theory, the momentum theory and the blade element momentum method. A part of the book is dedicated to the description and implementation of vortex methods. The remaining of the book focuses on the study of wind turbine aerodynamics using vortex-theory analyses or vortex-methods. Examples of vortex-theory applications are: optimal rotor design, tip-loss corrections, yaw-models and dynamic inflow models. Historical derivations and recent extensions of the models are presented. The cylindrical vortex model is another example of a simple analytical vortex model presented in this book. This model leads to the development of different BEM models and it is also used to provide the analytical velocity field upstream of a turbine or a wind farm under aligned or yawed conditions. Different applications of numerical vortex methods are presented. Numerical methods are used for instance to investigate the influence of a wind turbine on the incoming turbulence. Sheared inflows and aero-elastic simulations are investigated using vortex methods for the first time. Many analytical flows are derived in details: vortex rings, vortex cylinders, Hill's vortex, vortex blobs etc. They are used throughout the book to devise simple rotor models or to validate the implementation of numerical methods. Several Matlab programs are provided to ease some of the most complex implementations.
This book provides a comprehensive introduction to embedded systems for smart appliances and energy management, bringing together for the first time a multidisciplinary blend of topics from embedded systems, information technology and power engineering. Coverage includes challenges for future resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation."
This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an actual prototype implementation of a 300 W scale hybrid energy storage system.
The purpose of this book is to describe the theory of Digital Power
Electronics and its applications. The authors apply digital control
theory to power electronics in a manner thoroughly different from
the traditional, analog control scheme. In order to apply digital
control theory to power electronics, the authors define a number of
new parameters, including the energy factor, pumping energy, stored
energy, time constant, and damping time constant. These parameters
differ from traditional parameters such as the power factor, power
transfer efficiency, ripple factor, and total harmonic distortion.
These new parameters result in the definition of new mathematical
modeling:
This book presents various computationally efficient component- and system-level design optimization methods for advanced electrical machines and drive systems. Readers will discover novel design optimization concepts developed by the authors and other researchers in the last decade, including application-oriented, multi-disciplinary, multi-objective, multi-level, deterministic, and robust design optimization methods. A multi-disciplinary analysis includes various aspects of materials, electromagnetics, thermotics, mechanics, power electronics, applied mathematics, manufacturing technology, and quality control and management. This book will benefit both researchers and engineers in the field of motor and drive design and manufacturing, thus enabling the effective development of the high-quality production of innovative, high-performance drive systems for challenging applications, such as green energy systems and electric vehicles.
This book presents a case study on a new approach for the optimum design of rooftop, grid-connected photovoltaic-system installation. The study includes two scenarios using different brands of commercially available PV modules and inverters. It investigates and compares several different rooftop grid-connected PV-system configurations taking into account PV modules and inverter specifications. The book also discusses the detailed dynamic MATLAB/Simulink model of the proposed rooftop grid-connected PV system, and uses this model to estimate the energy production capabilities, cost of energy (COE), simple payback time (SPBT) and greenhouse gas (GHG) emissions for each configuration. The book then presents a comprehensive small signal MATLAB/Simulink model for the DC-DC converter operated under continuous conduction mode (CCM). First, the buck converter is modeled using state-space average model and dynamic equations, depicting the converter, are derived. Then a detailed MATLAB/Simulink model utilizing SimElectronics (R) Toolbox is developed. Lastly, the robustness of the converter model is verified against input voltage variations and step load changes. |
You may like...
Our Words, Our Worlds - Writing On Black…
Makhosazana Xaba
Paperback
|