![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
How to design a solar power plant, from start to finish In Step-by-Step Design of Large-Scale Photovoltaic Power Plants, a team of distinguished engineers delivers a comprehensive reference on PV power plants--and their design--for specialists, experts, and academics. Written in three parts, the book covers the detailed theoretical knowledge required to properly design a PV power plant. It goes on to explore the step-by-step requirements for creating a real-world PV power plant, including parts and components design, mathematical formulations and calculations, analyses, evaluations, and planning. The book concludes with a discussion of a sample solar plant design, as well as tips on how to avoid common design mistakes, and how to handle the operation and maintenance of PV power plants. Step-by-Step Design of Large-Scale Photovoltaic Power Plants also includes: Thorough introductions to the basic requirements of design, economic analyses, and investment revenue Comprehensive explorations of the requirements for feasibility study and grid connection study Introducing solar resource, and determining optimum tilt angle and module inter-row spacing Presenting methodology for design of large-scale PV plant, requirements of engineering document, and optimal design algorithm In-depth examinations for selecting PV module, inverter, string, and DC side equipment Practical discussions of system losses, as well as estimation of yearly electrical energy production, capacity factor, and performance ratio of large-scale PV plant Perfect for professionals in the solar power industry, Step-by-Step Design of Large-Scale Photovoltaic Power Plants will also earn a place in the libraries of equipment manufacturers and university professors seeking a one-stop resource for the design of PV power plants.
This comprehensive reference text discusses simulation with case studies and realworld applications related to energy system models, the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems. The text covers analysis and modeling of the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems. It further discusses economic aspects useful for policy makers and industrial professionals. It covers important topics, including smart grids architectures, wide-area situational awareness (WASA), energy management systems (EMS), demand response (DR), smart grid standardization exertions, virtual power plants, battery degradation modeling, optimization approaches in modeling, and smart metering infrastructure. The book: Discusses the analysis and modeling of the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems Covers issues and challenges encountered in the large-scale integration of electric vehicles, energy storage systems and renewable energy systems into future smart grid design Provides simulation with case studies and real-world applications related to energy system models, electric vehicles, and energy storage systems Discusses the integration of large renewable energy systems, with the presence of a large number of electric vehicles and storage devices/systems Discussing concepts of smart grids, together with the deployment of electric vehicles, energy storage systems and renewable energy systems, this text will be useful as a reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, renewable energy, and clean technologies. It further discusses topics, including electric grid infrastructure, architecture, interfacing, standardization, protocols, security, reliability, communication, and optimal control.
This textbook is intended for engineering students taking courses in power electronics, renewable energy sources, smart grids or static power converters. It is also appropriate for students preparing a capstone project where they need to understand, model, supply, control and specify the grid side power converters. The main goal of the book is developing in students the skills that are required to design, control and use static power converters that serve as an interface between the ac grid and renewable power sources. The same skills can be used to design, control and use the static power converters used within the micro-grids and nano-grids, as the converters that provide the interface between such grids and the external grid. The author's approach starts with basic functionality and the role of grid connected power converters in their typical applications, and their static and dynamic characteristics. Particular effort is dedicated to developing simple, concise, intuitive and easy-to-use mathematical models that summarize the essence of the grid side converter dynamics. Mathematics is reduced to a necessary minimum, solved examples are used extensively to introduce new concepts, and exercises are used to test mastery of new skills.
Advances in Grid-Connected Photovoltaic Power Conversion Systems addresses the technological challenges of fluctuating and unreliable power supply in grid-connected photovoltaic (PV) systems to help students, researchers, and engineers work toward more PV installations in the grid to make society more sustainable and reliable while complying with grid regulations. The authors combine their extensive knowledge and experience in this book to address both the basics of the power electronic converter technology and the advances of such practical electric power conversion systems. This book includes extensive, step-by-step practical application examples to assist students and engineers to better understand the role of power electronics in modern PV applications and solve the practical issues in grid-connected PV systems.
This book builds on the cutting edge research presented in the previous edition that was the first of its kind to present the technology behind an emerging power systems management tool still in the early stages of commercial roll-out. In the intervening years, synchrophasors have become a crucial and widely adopted tool in the battle against electricity grid failures around the world. Still the most accurate wide area measurement (WAMS) technology for power systems, synchronized phasor measurements have become increasingly sophisticated and useful for system monitoring, as the advent of big data storage allows for more nuanced real-time analysis, allowing operators to predict, prevent and mitigate the impacts of blackouts with enhanced accuracy and effectiveness. This new edition continues to provide the most encompassing overview of the technology from its pioneers, and has been expanded and updated to include all the applications and optimizations of the last decade.
The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods.
This book analyzes the continuous operation of a power plant with condensing power units in combined heat and power mode (CHP-mode) over a period of one year. Focusing on the operation of one and two power-unit systems with differing heat exchanger configurations, this book uses mathematical modeling of the steam-water cycle of a 370 MW power unit to calculate the operating characteristics and mass-energy balance of the system. Featuring comprehensive thermodynamic analysis of the quasi-unsteady operation of power units in cogeneration for electrical power generation, as determined by the Polish Power System, this work also includes an economic analysis of the power plant, presenting the costs and economic effectiveness of such a system.
1) Familiarizes with concepts, key components, and system architecture of practical VPPs. 2) Discusses the role of VPPs in future energy communities 3) Explores smart functionalities and advance algorithms for energy management and de-carbonization within the VPP. 4) Introduces novel business models for flexibility services in different time frames, local and global markets. 5) Discusses smart contract concept and peer-to-peer trading models within a VPP. 6) Includes application of emerging technologies in the context of VPP such as blockchain, digital twin, distributed ledger technology, etc.
This book provides a hybrid approach to fault detection and diagnostics. It presents a detailed analysis related to practical applications of the fault detection and diagnostics framework, and highlights recent findings on power plant nonlinear model identification and fault diagnostics. The effectiveness of the methods presented is tested using data acquired from actual cogeneration and cooling plants (CCPs). The models presented were developed by applying Neuro-Fuzzy (NF) methods. The book offers a valuable resource for researchers and practicing engineers alike.
In this book the authors first provide a comprehensive survey on the available studies on control, management, and optimization strategies in AC and DC microgrids. The authors then provide the design of a laboratory-scale microgrid system. Finally, a real-world implementation of the deigned framework is provided. This book paves the way for researchers working on the smart microgrids spread over the fields of electrical engineering, power systems, and smart infrastructures. Furthermore, it provides the readers with a comprehensive insight to understand an in-depth big picture of smart microgrids as well as an all-inclusive framework for laboratory-scale implementation of a microgrid. It is suitable for senior undergraduate students, graduate students who are interested in research in areas related to future smart grids and microgrids, and the researchers working in the related areas. This book also can be used as a reference book for researchers who want to develop laboratories on smart microgrids for future research.
An introduction to the overall design of power plant systems, focusing on system rather than component design. Examines thermal aspects of systems and the desicions necessary to produce optimal power plant design. Includes appropriate computer methodology. Suitable for introductory courses in mechanical engineering.
Inspection and Monitoring Technologies of Transmission Lines with Remote Sensing helps readers build a thorough understanding of new technologies and world-class practices developed by the State Grid Corporation of China-the organization responsible for the world's largest power distribution network. Monitoring the operational status of high-voltage transmission lines is critical in supply assurance and continuity. Given the physical size, geographical, and climate variances that transmission lines are subject to, remote sensing and inspection is a critical technology for power distribution organizations. This reference covers current and developing technologies, equipment, and methods for the safe and secure operation and maintenance of transmission lines, including satellite remote sensing technology, infrared and ultraviolet detection technology, helicopter inspection technology, and condition monitoring technology.
This fully updated textbook provides complete coverage of electrical circuits and introduces students to the field of energy conversion technologies, analysis and design. Chapters are designed to equip students with necessary background material in such topics as devices, switching circuit analysis techniques, converter types, and methods of conversion. The book contains a large number of examples, exercises, and problems to help enforce the material presented in each chapter. A detailed discussion of resonant and softswitching dc-to-dc converters is included along with the addition of new chapters covering digital control, non-linear control, and micro-inverters for power electronics applications. Designed for senior undergraduate and graduate electrical engineering students, this book provides students with the ability to analyze and design power electronic circuits used in various industrial applications.
"Power System Coherency and Model Reduction" provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method. Both linear and nonlinear analysis methods are covered. This is a reference book for researchers interested in interarea oscillations and model reduction, and power engineers in developing reduced models for power system studies and control design.
Focusing on power systems reliability and generating unit commitments, which are essential in the design and evaluation of the electric power systems for planning, control, and operation, this informative volume covers the concepts of basic reliability engineering, such as power system spinning reserve, types of load curves and their objectives and benefits, the electric power exchange, and the system operation constraints. The author explains how the probability theory plays an important role in reliability applications and discusses the probability applications in electric power systems that led to the development of the mathematical models that are illustrated in the book. The algorithms that are presented throughout the chapters will help researchers and engineers to implement their own suitable programs where needed and will also be valuable for students. The Artificial Neural Networks (ANN) and Fuzzy Logic (FL) systems are discussed and a number of load estimation models are built for some cases, where their formulas are developed. A number of developed models are presented, including the Kronecker techniques, Fourth-Order Runge-Kutta, System Multiplication Method, or Adams Method; and components with different connections and different distributions are presented. A number of examples are explained showing how to build and evaluate power plants.
This book discusses control and optimization techniques in the broadest sense, covering new theoretical results and the applications of newly developed methods for PV systems. Going beyond classical control techniques, it promotes the use of more efficient control and optimization strategies based on linearized models and purely continuous (or discrete) models. These new strategies not only enhance the performance of the PV systems, but also decrease the cost per kilowatt-hour generated.
Now in its 4th edition, this single resource covers all aspects of the utilization of geothermal energy for power generation using fundamental scientific and engineering principles. Its practical emphasis is enhanced by the use of global case studies from real plants and applications from around the world that increase your understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. Technical, economic and business aspects presented in case studies provide current and up-and-coming geothermal developers and entrepreneurs with a solid understanding of opportunities and pitfalls. Geothermal Power Plants, 4th Edition, presents state-of-the-art geothermal developments and experience of real applications for professionals, and a comprehensive reference for theory and practice.
The book introduces the fundamentals of fluid-mechanics, momentum theories, vortex theories and vortex methods necessary for the study of rotors aerodynamics and wind-turbines aerodynamics in particular. Rotor theories are presented in a great level of details at the beginning of the book. These theories include: the blade element theory, the Kutta-Joukowski theory, the momentum theory and the blade element momentum method. A part of the book is dedicated to the description and implementation of vortex methods. The remaining of the book focuses on the study of wind turbine aerodynamics using vortex-theory analyses or vortex-methods. Examples of vortex-theory applications are: optimal rotor design, tip-loss corrections, yaw-models and dynamic inflow models. Historical derivations and recent extensions of the models are presented. The cylindrical vortex model is another example of a simple analytical vortex model presented in this book. This model leads to the development of different BEM models and it is also used to provide the analytical velocity field upstream of a turbine or a wind farm under aligned or yawed conditions. Different applications of numerical vortex methods are presented. Numerical methods are used for instance to investigate the influence of a wind turbine on the incoming turbulence. Sheared inflows and aero-elastic simulations are investigated using vortex methods for the first time. Many analytical flows are derived in details: vortex rings, vortex cylinders, Hill's vortex, vortex blobs etc. They are used throughout the book to devise simple rotor models or to validate the implementation of numerical methods. Several Matlab programs are provided to ease some of the most complex implementations.
This book describes the history and development of marine power plant. Problems of arrangement, general construction and parameters of marine power plants of all types are considered. It also introduces different characteristics of each type of marine power plant, matching characteristic for diesel propulsion. The book gives a clear idea about different marine power engines, including working principle, structure and application. Readers will understand easily the power system for ships since there are a lot of illustrations and instructions for each of the equipment. This book is useful for students majoring in "marine engineering", "energy and power engineering" and other related majors. It is also useful for operators of marine institution for learning main design and operation of ship plants.
This book focuses on the theory and application of power switching components in power networks. More specifically, it discusses current interruption theory, applied stresses to switching components in power networks and appropriate methods to test their different functionalities. It reviews the basic working principles of current technologies and summarizes the upcoming technological advances within the field of power switching devices. Taking an educational approach to the subject, this book is useful for graduate courses on high voltage equipment and power device technology within the electric power engineering discipline. Furthermore, inclusion of numerous worked examples, exercises and easily digestible descriptions of complex physical phenomena in switching devices make this an invaluable self-learning resource for engineers.
The present book addresses various power system planning issues for professionals as well as senior level and postgraduate students. Its emphasis is on long-term issues, although much of the ideas may be used for short and mid-term cases, with some modifications. Back-up materials are provided in twelve appendices of the book. The readers can use the numerous examples presented within the chapters and problems at the end of the chapters, to make sure that the materials are adequately followed up. Based on what Matlab provides as a powerful package for students and professional, some of the examples and the problems are solved in using M-files especially developed and attached for this purpose. This adds a unique feature to the book for in-depth understanding of the materials, sometimes, difficult to apprehend mathematically. Chapter 1 provides an introduction to Power System Planning (PSP) issues and basic principles. As most of PSP problems are modeled as optimization problems, optimization techniques are covered in some details in Chapter 2. Moreover, PSP decision makings are based on both technical and economic considerations, so economic principles are briefly reviewed in Chapter 3. As a basic requirement of PSP studies, the load has to be known. Therefore, load forecasting is presented in Chapter 4. Single bus Generation Expansion Planning (GEP) problem is described in Chapter 5. This study is performed using WASP-IV, developed by International Atomic Energy Agency. The study ignores the grid structure. A Multi-bus GEP problem is discussed in Chapter 6 in which the transmission effects are, somehow, accounted for. The results of single bus GEP is used as an input to this problem. SEP problem is fully presented in Chapter 7. Chapter 8 devotes to Network Expansion Planning (NEP) problem, in which the network is planned. The results of NEP, somehow, fixes the network structure. Some practical considerations and improvements such as multi-voltage cases are discussed in Chapter 9. As NEP study is typically based on some simplifying assumptions and Direct Current Load Flow (DCLF) analysis, detailed Reactive Power Planning (RPP) study is finally presented in Chapter 10, to guarantee acceptable ACLF performance during normal as well as contingency conditions. This, somehow, concludes the basic PSP problem. The changing environments due to power system restructuring dictate some uncertainties on PSP issues. It is shown in Chapter 11 that how these uncertainties can be accounted for. Although is intended to be a text book, PSP is a research oriented topic, too. That is why Chapter 12 is devoted to research trends in PSP. The chapters conclude with a comprehensive example in Chapter 13, showing the step-by-step solution of a practical case.
This book provides a reference to analysis techniques of common cooling water system problems and a historical perspective on solutions to chronic cooling water system problems, such as corrosion and biofouling. It covers best design practices for cooling water systems that are required to support the operation of all electric power plants. Plant engineers will gain better understanding of the practical issues associated with their cooling water systems and new designs or modifications of their systems should consider the actual challenges to the systems. The book is intended for graduate students and practicing engineers working in both nuclear and fossil power plants and industrial facilities that use large amounts of cooling water.
This book presents selected articles from INDIA SMART GRID WEEK (ISGW 2017), which is the third edition of the Conference cum Exhibition on Smart Grids and Smart Cities, organized by India Smart Grid Forum from 07-10 March 2017 at Manekshaw Centre, Dhaula Kuan, New Delhi, India. ISGF is a public private partnership initiative of the Ministry of Power, Govt. of India with the mandate of accelerating smart grid deployments across the country. This book gives current scenario updates of Indian power sector business. It also highlights various disruptive technologies for power sector business.
Fault Location on Power Lines enables readers to pinpoint the location of a fault on power lines following a disturbance. The nine chapters are organised according to the design of different locators. The authors do not simply refer the reader to manufacturers' documentation, but instead have compiled detailed information to allow for in-depth comparison. Fault Location on Power Lines describes basic algorithms used in fault locators, focusing on fault location on overhead transmission lines, but also covering fault location in distribution networks. An application of artificial intelligence in this field is also presented, to help the reader to understand all aspects of fault location on overhead lines, including both the design and application standpoints. Professional engineers, researchers, and postgraduate and undergraduate students will find Fault Location on Power Lines a valuable resource, which enables them to reproduce complete algorithms of digital fault locators in their basic forms.
This unique book describes how the General Algebraic Modeling System (GAMS) can be used to solve various power system operation and planning optimization problems. This book is the first of its kind to provide readers with a comprehensive reference that includes the solution codes for basic/advanced power system optimization problems in GAMS, a computationally efficient tool for analyzing optimization problems in power and energy systems. The book covers theoretical background as well as the application examples and test case studies. It is a suitable reference for dedicated and general audiences including power system professionals as well as researchers and developers from the energy sector and electrical power engineering community and will be helpful to undergraduate and graduate students. |
You may like...
Wireless Communication Networks…
Hailong Huang, Andrey V. Savkin, …
Paperback
R2,763
Discovery Miles 27 630
Publishing, Politics, and Culture - The…
Graham Rees, Maria Wakely
Hardcover
R3,720
Discovery Miles 37 200
Inerter and Its Application in Vibration…
Michael Z. Q. Chen, Yinlong Hu
Hardcover
R4,011
Discovery Miles 40 110
The Invisible Art of Literary Editing
Bryan Furuness, Sarah Layden
Hardcover
R1,712
Discovery Miles 17 120
Advances in Delay-tolerant Networks…
Joel J. P. C. Rodrigues
Hardcover
R6,147
Discovery Miles 61 470
|