![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power networks, systems, stations & plants
This riveting study shows how the intersection of technology and politics has shaped South African history since the 1960s. It is impossible to understand South Africa’s energy crisis without knowing this history. Faeeza Ballim’s deeply researched book challenges many prevailing assumptions and beliefs made regarding the crisis. The book highlights the importance of technology to our understanding of South African history and challenges the idea that the technological state corporations were proxies for the apartheid government. While a part of the broader national modernization project under apartheid, these corporations also set the stage for worker solidarity and trade union organization in the Waterberg and elsewhere in the country. Faeeza Ballim argues that the state corporations, their technology, and their engineers enjoyed ambivalent relationships with the governments of their time. And in the democratic era, while Eskom has been caught up in the scourge of government corruption, it has retained a degree of organizational autonomy and offered a degree of resistance to those who were attempting further corrupt practices.
With the integration of more distributed or aggregated renewables, and the wide utilization of power electronic devices, modern power systems are facing new stability and security challenges, such as the weakly damped oscillation caused by wind farms connected through long distance transmission lines, the frequency stability problem induced by the reduction of inertia and the voltage stability issue resulting from the interactions between transmission systems and dynamic loads. Meanwhile, synchronized phasor measurement technology developed very fast in the last decade, and more phasor measurement units (PMUs) and wide area measurement systems (WAMSs) have been deployed. These provide more insights into the system dynamics and approaches to overcoming the new challenges. This book addresses the emerging concepts, methodologies and applications of wide area monitoring, control and protection in power systems with integrated large scale renewables. Chapters cover monitoring, modelling and validation, control, and data mining with an emphasis on synchrophasor technology, and experiences with real power grids.
Condition monitoring of engineering plants has increased in importance as engineering processes have become increasingly automated. However, electrical machinery usually receives attention only at infrequent intervals when the plant or the electricity generator is shut down. The economics of industry have been changing, placing ever more emphasis on the importance of reliable operation of the plants. Electronics and software in instrumentation, computers, and digital signal processors have improved our ability to analyse machinery online. Condition monitoring is now being applied to a range of systems from fault-tolerant drives of a few hundred watts to machinery of a few hundred MW in major plants. This book covers a large range of machines and their condition monitoring. This 3rd edition builds on the 2nd edition through a major revision, update of chapters and a comprehensive list of references & standards. Permanent magnet, switched reluctance and other types of machines are now covered, as well as variable speed drive machines and off-line techniques. Contents cover an introduction to condition monitoring; rotating electrical machines; electrical machine construction, operation and failure modes; reliability of machines and typical failure rates; signal processing and instrumentation requirements; on-line temperature monitoring; on-line chemical monitoring; on-line vibration monitoring; on-line current, flux and power monitoring; on-line partial discharge (PD) electrical monitoring; on-line variable speed drive machine monitoring; off-line monitoring; condition-based maintenance and asset management; application of artificial intelligence techniques to CM; and safety, training and qualification.
Smart technology has significantly enhanced the efficient management of electric power supply systems. Despite the benefits of these advances, the complexity of such systems has proven to be difficult for testing purposes. Smart Grid Test Bed Using OPNET and Power Line Communication: Emerging Research and Opportunities presents an innovative perspective on the design, development, and implementation of an expandable test bed for smart grid applications. Highlighting pertinent topics such as intrusion detection, user interface, and performance evaluation, this book is an ideal reference source for researchers, academics, engineers, students, and professionals interested in the latest advancements for smart grid technologies.
This book is intended to serve as a textbook for students of electrical engineering at the graduate level. The inclusion of a number of problems, many of which are completely solved, makes this book very useful in understanding topics in applied statistics and physics of dielectrics. Also, the contents are so designed as to provide a broad picture of dielectrics and electrical insulation. In view of this, the author believes that manufacturers of high voltage and high power equipments can be benefited to a considerable extent. The book could be of particular interest to research engineers/scientists working in research laboratories and conducting applied insulation research. Power supply utilities can consult this book for scheduling the diagnostic testing and condition monitoring schedules. Station engineers will be able to derive support in analyzing, for example, gas analysis and partial discharge data, if they are equipped with facilities to carry out such measurements.
For junior or senior undergraduate students in Electrical and Electronic Engineering. This text covers the basics of emerging areas in power electronics and a broad range of topics such as power switching devices, conversion methods, analysis and techniques, and applications. Its unique approach covers the characteristics of semiconductor devices first, then discusses the applications of these devices for power conversions. Four main applications are included: flexible ac transmissions (FACTs), static switches, power supplies, dc drives, and ac drives.
The book will be useful for those who are interested in Power Systems, Control Systems and Electrical Machines, especially Synchronous machines. It provides comprehensive and in-depth information on Dynamics and Transient Stability aspects. The books covers Power Systems Modeling, Application of Frequency Domain, Time Domain Techniques and Lyapunov Direct Method for Analysis of Dynamical Behaviour of Power Systems subjected to small and large disturbances. The application of techniques has been stressed rather than description of the theoretical basis of these techniques. Several illustrative examples have been presented wherever necessary.
<> Adaptive Filter Theory, 5e, is ideal for courses in Adaptive Filters. Haykin examines both the mathematical theory behind various linear adaptive filters and the elements of supervised multilayer perceptrons. In its fifth edition, this highly successful book has been updated and refined to stay current with the field and develop concepts in as unified and accessible a manner as possible.
For courses in Motor Controls, Electric Machines, Power Electronics, and Electric Power. This best-selling text employs a theoretical, practical, multidisciplinary approach to provide introductory students with a broad understanding of modern electric power. The scope of the book reflects the rapid changes that have occurred in power technology over the past few years-allowing the entrance of power electronics into every facet of industrial drives, and expanding the field to open more career opportunities.
Most people-including many legislators, regulators, and other decision makers in the electric utility industry-have misconceptions about how electric utilities really "work" and plan for the future. This lack of understanding can lead to poorly informed decisions and policies that directly affect the choices utilities must make. Using easy-to-understand text and examples, Electric Utility Resource Planning: Economics, Reliability, and Decision-Making clarifies how utilities operate their systems and prepare for the future. This explanation will show readers that both expected and counterintuitive results can occur (i.e., conservation might result in higher air emissions, or lowering costs could lead to higher electric rates). Taking readers step by step through this process, the book (in the following order): "Creates" a hypothetical utility Explains how and why a utility operates its system of generating units Discusses the planning methods that a utility would (or should) use Guides readers through each stage of a planning analysis for the hypothetical utility, examining various resource options (conservation, new power plants, and solar) In addition, the author introduces four Fundamental Principles of Resource Planning that should guide utilities. He also offers opinions on how certain trends in utility regulation and legislation can hinder utility planners' efforts to identify and select the best resources for the utility's customers. With this book, author Dr. Steven Sim applies his experience and insights from more than two decades of resource planning for Florida Power and Light (FPL). As one of the largest utilities in the United States, FPL has faced a multitude of resource planning challenges, and Dr. Sim has performed and supervised thousands of analyses designed to meet these obstacles. He has also served as an FPL witness in regulatory hearings on a wide variety of topics, ranging from the economic implications of nuclear, conservation, coal, gas, and other resource options, to the non-economic impacts (air emissions, fuel usage, system reliability, etc.) they present.
Wide area monitoring, protection and control systems (WAMPACs) have been recognized as the most promising enabling technologies to meet challenges of modern electric power transmission systems, where reliability, economics, environmental and other social objectives must be balanced to optimize the grid assets and satisfy growing electrical demand. To this aim WAMPAC requires precise phasor and frequency information, which are acquired by deploying multiple time synchronized sensors, known as Phasor Measurement Units (PMUs), providing precise synchronized information about voltage and current phasors, frequency and rate-of-change-of-frequency. This book provides an overview of this emerging technology. Topics covered include an introduction to WAMPACs; reliability-based substation monitoring systems placement; system integrity protection scheme based on PMU technology; new methodologies for large scale power system dynamic analysis; a fuzzy-based knowledge discovery paradigm for on-line optimal power flow analysis; and false data injection attacks and countermeasures for wide area measurement system.
In recent years it has become increasingly apparent that conventional electrical networks cannot meet the requirements of the 21st century. These include reliability, efficiency, liberalisation of electricity markets, as well as effective and seamless integration of various types of renewable energy sources, electric vehicles, and customers as players. The emergence of new technologies such as distributed control, monitoring devices, and tremendous advances in information and communication technology have paved the way to realize the Smart Grid concept. This book identifies and discusses the tools required to ensure the interoperability among the various digitally-based components of the Smart Grid. Topics covered include an introduction to the smart grid concept; smart grid versus conventional electric networks; smart grid infrastructure; interoperability standards; communication system and its cyber security; international standard IEC 61850 and its application to smart grids; power system protection under smart grid environment; application of smart grid concept to distribution networks; integration of electric vehicles; energy storage systems; and the smart transmission grid. Introduction to the Smart Grid: Concepts, technologies and evolution is essential reading for researchers, engineers and advanced students working in energy engineering.
Electrical Power Transmission System Engineering: Analysis and Design is devoted to the exploration and explanation of modern power transmission engineering theory and practice. Designed for senior-level undergraduate and beginning-level graduate students, the book serves as a text for a two-semester course or, by judicious selection, the material may be condensed into one semester. Written to promote hands-on self-study, it also makes an ideal reference for practicing engineers in the electric power utility industry. Basic material is explained carefully, clearly, and in detail, with multiple examples. Each new term is defined as it is introduced. Ample equations and homework problems reinforce the information presented in each chapter. A special effort is made to familiarize the reader with the vocabulary and symbols used by the industry. Plus, the addition of numerous impedance tables for overhead lines, transformers, and underground cables makes the text self-contained. The Third Edition is not only up to date with the latest advancements in electrical power transmission system engineering, but also: Provides a detailed discussion of flexible alternating current (AC) transmission systems Offers expanded coverage of the structures, equipment, and environmental impacts of transmission lines Features additional examples of shunt fault analysis using MATLAB (R) Also included is a review of the methods for allocating transmission line fixed charges among joint users, new trends and regulations in transmission line construction, a guide to the Federal Energy Regulatory Commission (FERC) electric transmission facilities permit process and Order No. 1000, and an extensive glossary of transmission system engineering terminology. Covering the electrical and mechanical aspects of the field with equal detail, Electrical Power Transmission System Engineering: Analysis and Design, Third Edition supplies a solid understanding of transmission system engineering today.
The UK model of incentive regulation of power grids was at one time the most advanced, and elements of it were adopted throughout the EU. This model worked well, particularly in the context of limited investment and innovation, a single and strong regulatory authority, and limited coordination between foreign grid operators. This enlightening book demonstrates how the landscape has changed markedly since 2010 and that regulation has had to work hard to catch up and evolve. As the EU enters a wave of investment and an era of new services and innovation, this has created growing tensions between national regulatory authorities in terms of coordinating technical standards and distribution systems. This is being played out against an increasingly disruptive backdrop of digitization, new market platforms and novel business models. Electricity Network Regulation in the EU adopts a truly European approach to the complex issues surrounding the topic, focusing on the grey areas and critical questions that have traditionally been difficult to answer. Incentive regulation and grids are addressed simultaneously at the theoretical and practical level, providing the reader with fundamental concepts and concrete examples. This timely book is an invaluable read for energy practitioners working in utility companies, regulators and other public bodies. It will also appeal to academics involved in the world of electricity regulation. The book utilizes language that would make it suitable for interdisciplinary students, including engineering and law scholars. Contributors include: P. Bhagwat, J.-M. Glachant, S.Y. Hadush, L. Meeus, V. Rious, N. Rossetto, T. Schittekatte
The book covers all topics that are considered essential for understanding the operation and design of EHV, AC overhead lines and underground cables. Theoretical analysis of all problems combined with practical application are presented in detail. EHV laboratory equipment and testing are fully covered together with application of digital recorders, fibre optics, etc. for impulse measurements. Every chapter contains many worked examples in order to illustrate and reinforce the theory. All examples are taken from practical situations as far as possible.
Written with the building owner or facility manager in mind, this plain English guide to use of energy management systems and direct digital control covers the full spectrum of hardware and software currently utilized to manage energy and control inside environments in all types of buildings and facilities. Topics include hardware and system components, system architecture, networking, communication protocol, operator/machine interface, estimating costs and savings, choosing the right system, system expansion, operation and maintenance, and operator training.
An examination of key issues in electric utilities restructuring. It covers: electric utility markets in and out of the USA; the Open Access Same-time Information System; tagging transactions; trading energy; hedging tools for managing risks in various markets; pricing volatility, risk and forecasting; regional transmission organization; and more. The text contains acronyms, a contract specifications sample, examples, and nearly 500 bibliographic citations, tables, and drawings.
This work seeks to provide a solid foundation to the principles and practices of dynamics and stability assessment of large-scale power systems, focusing on the use of interconnected systems - and aiming to meet the requirements of today's competitive and deregulated environments. It contains easy-to-follow examples of fundamental concepts and algorithmic procedures.
The calculation of short-circuit currents is a central task for Power System engineers, as they are essential parameters for the design of electrical equipment and installations, the operation of power systems and the analysis of outages and faults. Short-circuit Currents gives an overview of the components within power systems with respect to the parameters needed for short-circuit current calculation. It also explains how to use the system of symmetrical components to analyse different types of short-circuits in power systems. The thermal and elctromagnetic effects of short-circuit currents on equipment and installations, short-time interference problems and measures for the limitation of short-circuit currents are also discussed. Detailed calculation procedures and typical data of equipment are provided in a separate chapter for easy reference, and worked examples are included throughout.
Power systems are becoming increasingly complex as well as flexible, able to integrate distributed renewable generation, EV, and additional loads. This expanded and updated second edition covers the technologies needed to operate modern power grids. Initial chapters cover power system modelling, telegrapher equations, power flow analysis, discrete Fourier transformation and stochastic differential equations. Ensuing chapters deal with power system operation and control, power flow, real-time control and state estimation techniques for distribution systems as well as shipboard systems. The final chapters describe stability analysis of power systems and cover voltage stability, transient stability, time delays, and limit cycles. New content for the second edition includes four new chapters on recent modelling, control and stability analysis of power electronic converters and electric vehicles. This new edition is an essential guide to technologies for operating modern flexible power systems for PhD students, early-career researchers and practitioners in the field.
The intermittency of renewable energy sources is making increased deployment of storage technology necessary. Technologies are needed with high round-trip efficiency and at low cost to allow renewables to undercut fossil fuels. The cost of lithium batteries has fallen, but producing them comes with a substantial carbon footprint, as well as a cost to the local environment. Compressed air energy storage (CAES) uses excess electricity, particularly from wind farms, to compress air. Re-expansion of the air then drives machinery to recoup the electric power. Prototypes have capacities of several hundred MW. Challenges lie in conserving the thermal energy associated with compressing air and leakage of that heat, materials, power electronics, connection with the power generator, and grid integration. This comprehensive book provides a systematic overview of the current state of CAES technology. After an introduction to motivation and principles, the key components are covered, and then the principal types of systems in the order of technical maturity: diabatic, adiabatic, and isothermal. Experts from industry write about their experiences with existing major systems and prototypes. Economic aspects, power electronics and machinery, as well as special systems for offshore applications, are dealt with. Researchers in academia and industry alike, in particular at energy storage technology manufacturers and utilities, as well as advanced students and energy experts in think tanks will find this work valuable reading.
Nanogrids are small energy grids, powered by various generators often including photovoltaics. For example, a nanogrid might supply a village in a rural area and allow that village to trade its surplus energy. A picogrid is a still smaller energy grid. IRENA defines nanogrids as systems handling up to 5 kW of power while picogrids handle up to 1 kW. Nanogrids and picogrids can play roles in urban, suburban and rural areas, particularly in developing countries, and can help with decarbonising the energy systems and empowering citizens. Electric vehicles (EV) are poised to play important roles and need to be accounted for in emerging and future small grids. This book introduces the principles of nano- and picogrids, then goes on to provide a technical analysis covering connected resources, modelling and performance, power quality and protection. The use of nano- and picogrids in conjunction with EV, charger technologies, the IoT, cloud computing and data sharing is explored. Case studies of real-life projects help readers to understand and apply the concepts for their own projects. Nanogrids and Picogrids and their Integration with Electric Vehicles is a valuable resource for researchers involved with power systems, particularly those with an interest in power supply in rural areas, or anyone with a particular interest in nano- and microgrids. It is also of use to advanced students, and to engineers working in utilities. |
![]() ![]() You may like...
The Ghost and the Cigarette - an…
Tonya Macalino, Maya Lilova, …
Hardcover
R1,190
Discovery Miles 11 900
Human Resource Management In South…
Surette Warnich, Michael R. Carrell, …
Paperback
|