![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > Set theory
Handbook of Mathematical Induction: Theory and Applications shows how to find and write proofs via mathematical induction. This comprehensive book covers the theory, the structure of the written proof, all standard exercises, and hundreds of application examples from nearly every area of mathematics. In the first part of the book, the author discusses different inductive techniques, including well-ordered sets, basic mathematical induction, strong induction, double induction, infinite descent, downward induction, and several variants. He then introduces ordinals and cardinals, transfinite induction, the axiom of choice, Zorn's lemma, empirical induction, and fallacies and induction. He also explains how to write inductive proofs. The next part contains more than 750 exercises that highlight the levels of difficulty of an inductive proof, the variety of inductive techniques available, and the scope of results provable by mathematical induction. Each self-contained chapter in this section includes the necessary definitions, theory, and notation and covers a range of theorems and problems, from fundamental to very specialized. The final part presents either solutions or hints to the exercises. Slightly longer than what is found in most texts, these solutions provide complete details for every step of the problem-solving process.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will tind the tinal question. G. K. Chesterton. The Scandal of Father Brown 'The point of a Pin'. 'The Hermit CIad in Crane Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite of ten in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to fiItering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Is the continuum hypothesis still open? If we interpret it as finding the laws of cardinal arithmetic (really exponentiation since addition and multiplication were classically solved), it was thought to be essentially solved by the independence results of Goedel and Cohen (and Easton) with some isolated positive results (like Galvin-Hajnal). It was expected that only more independence results remained to be proved. The author has come to change his view: we should stress ]*N0 (not 2] ) and mainly look at the cofinalities rather than cardinalities, in particular pp (), pcf ( ). Their properties are investigated here and conventional cardinal arithmetic is reduced to 2]*N (*N - regular, cases totally independent) and various cofinalities. This enables us to get new results for the conventional cardinal arithmetic, thus supporting the interest in our view. We also find other applications, extend older methods of using normal fiters and prove the existence of Jonsson algebra.
A Concrete Introduction to Analysis, Second Edition offers a major reorganization of the previous edition with the goal of making it a much more comprehensive and accessible for students. The standard, austere approach to teaching modern mathematics with its emphasis on formal proofs can be challenging and discouraging for many students. To remedy this situation, the new edition is more rewarding and inviting. Students benefit from the text by gaining a solid foundational knowledge of analysis, which they can use in their fields of study and chosen professions. The new edition capitalizes on the trend to combine topics from a traditional transition to proofs course with a first course on analysis. Like the first edition, the text is appropriate for a one- or two-semester introductory analysis or real analysis course. The choice of topics and level of coverage is suitable for mathematics majors, future teachers, and students studying engineering or other fields requiring a solid, working knowledge of undergraduate mathematics. Key highlights: Offers integration of transition topics to assist with the necessary background for analysis Can be used for either a one- or a two-semester course Explores how ideas of analysis appear in a broader context Provides as major reorganization of the first edition Includes solutions at the end of the book
Exploring the Infinite addresses the trend toward a combined transition course and introduction to analysis course. It guides the reader through the processes of abstraction and log- ical argumentation, to make the transition from student of mathematics to practitioner of mathematics. This requires more than knowledge of the definitions of mathematical structures, elementary logic, and standard proof techniques. The student focused on only these will develop little more than the ability to identify a number of proof templates and to apply them in predictable ways to standard problems. This book aims to do something more; it aims to help readers learn to explore mathematical situations, to make conjectures, and only then to apply methods of proof. Practitioners of mathematics must do all of these things. The chapters of this text are divided into two parts. Part I serves as an introduction to proof and abstract mathematics and aims to prepare the reader for advanced course work in all areas of mathematics. It thus includes all the standard material from a transition to proof" course. Part II constitutes an introduction to the basic concepts of analysis, including limits of sequences of real numbers and of functions, infinite series, the structure of the real line, and continuous functions. Features Two part text for the combined transition and analysis course New approach focuses on exploration and creative thought Emphasizes the limit and sequences Introduces programming skills to explore concepts in analysis Emphasis in on developing mathematical thought Exploration problems expand more traditional exercise sets
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
Combinatory logic is one of the most versatile areas within logic that is tied to parts of philosophical, mathematical, and computational logic. Functioning as a comprehensive source for current developments of combinatory logic, this book is the only one of its kind to cover results of the last four decades. Using a reader-friendly style, the author presents the most up-to-date research studies. She includes an introduction to combinatory logic before progressing to its central theorems and proofs. The text makes intelligent and well-researched connections between combinatory logic and lambda calculi and presents models and applications to illustrate these connections.
This book is about "diamond," a logic of paradox. In diamond, a statement can be true yet false; an "imaginary" state, midway between being and non-being. Diamond's imaginary values solve many logical paradoxes unsolvable in two-valued boolean logic. In this volume, paradoxes by Russell, Cantor, Berry and Zeno are all resolved. This book has three sections: Paradox Logic, which covers the classic paradoxes of mathematical logic, shows how they can be resolved in this new system; The Second Paradox, which relates diamond to Boolean logic and the Spencer-Brown "modulator"; and Metamathematical Dilemma, which relates diamond to Gdelian meta-mathematics and dilemma games.
Nonlinear systems with stationary sets are important because they cover a lot of practical systems in engineering. Previous analysis has been based on the frequency-domain for this class of systems. However, few results on robustness analysis and controller design for these systems are easily available.This book presents the analysis as well as methods based on the global properties of systems with stationary sets in a unified time-domain and frequency-domain framework. The focus is on multi-input and multi-output systems, compared to previous publications which considered only single-input and single-output systems. The control methods presented in this book will be valuable for research on nonlinear systems with stationary sets.
The requirement to reason logically forms the basis of all mathematics, and hence mathematical logic is one of the most fundamental topics that students will study. Assuming no prior knowledge of the topic, this book provides an accessible introduction for advanced undergraduate students.
Many of the modern variational problems in topology arise in different but overlapping fields of scientific study: mechanics, physics and mathematics. In this work, Professor Fomenko offers a concise and clean explanation of some of these problems (both solved and unsolved), using current methods and analytical topology. The author's skillful exposition gives an unusual motivation to the theory expounded, and his work is recommended reading for specialists and nonspecialists alike, involved in the fields of physics and mathematics at both undergraduate and graduate levels.
A compilation of articles about Intensionality in philosophy, logic, linguistics, and mathematics. The articles approach the concept of Intensionality from different perspectives. Some articles address philosophical issues raised by the possible worlds approach to intensionality; others are devoted to technical aspects of modal logic. The volume highlights the particular interdisciplinary nature of intensionality with articles spanning the areas of philosophy, linguistics, mathematics, and computer science.
A compilation of articles about Intensionality in philosophy, logic, linguistics, and mathematics. The articles approach the concept of Intensionality from different perspectives. Some articles address philosophical issues raised by the possible worlds approach to intensionality; others are devoted to technical aspects of modal logic. The volume highlights the particular interdisciplinary nature of intensionality with articles spanning the areas of philosophy, linguistics, mathematics, and computer science.
Over the past 20 years, the emergence of clone theory, hyperequational theory, commutator theory and tame congruence theory has led to a growth of universal algebra both in richness and in applications, especially in computer science. Yet most of the classic books on the subject are long out of print and, to date, no other book has integrated these theories with the long-established work that supports them.
Originally published in 1973. This book is directed to the student of philosophy whose background in mathematics is very limited. The author strikes a balance between material of a philosophical and a formal kind, and does this in a way that will bring out the intricate connections between the two. On the formal side, he gives particular care to provide the basic tools from set theory and arithmetic that are needed to study systems of logic, setting out completeness results for two, three, and four valued logic, explaining concepts such as freedom and bondage in quantificational logic, describing the intuitionistic conception of the logical operators, and setting out Zermelo's axiom system for set theory. On the philosophical side, he gives particular attention to such topics as the problem of entailment, the import of the Loewenheim-Skolem theorem, the expressive powers of quantificational logic, the ideas underlying intuitionistic logic, the nature of set theory, and the relationship between logic and set theory. There are exercises within the text, set out alongside the theoretical ideas that they involve.
This book presents a study on the foundations of a large class of paraconsistent logics from the point of view of the logics of formal inconsistency. It also presents several systems of non-standard logics with paraconsistent features.
In this volume, logic starts from the observation that in everyday arguments, as brought forward say by a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. This leads to Gentzen's calculi of derivations, presented first for positive logic and then, depending on the requirements made on the behaviour of negation, for minimal, intuitionist and classical logic. Identifying interdeducible formulas, each of these calculi gives rise to a lattice-like ordered structure. Describing the generation of filters in these structures leads to corresponding modus ponens calculi, and these turn out to be semantically complete because they express the algorithms generating semantical consequences, as obtained in Volume One of these lectures. The operators transforming derivations from one type of calculus into the other are also studied with respect to changes of the lengths of derivations, and operators eliminating defined predicate and function symbols are described expli
For propositional logic it can be decided whether a formula has a deduction from a finite set of other formulas. The present volume begins with a method to decide this for the quantified formulas of those fragments of arithmetic which express the properties of order-plus-successor and or order-plus-addition (Presburger arithmetic); it makes use of an algorithm eliminating quantifiers which, in turn, is also applied to obtain consistency proofs for these fragments. Stronger fragments of arithmetic, also containing multiplication, are sufficiently rich to express a primitive recursive encoding of terms, formulas and deductions, and this leads to Godel's theorem exhibiting statements already undecidable in these fragments. Its central idea, isolated in Tarski's fixpoint lemma, has a certain analogy with Eubulides' antinomy of the Liar, and in a non-technical chapter, accessible to a wider class of readers, this analogy is exploited for an informal discussion of undefinability and incompleteness. The technical tools required to verify the hypotheses on arithmetical representability, on the other hand, are collected in an independent presentation of recursive functions and relations.
Fuzzy set theory - and its underlying fuzzy logic - represents one of the most significant scientific and cultural paradigms to emerge in the last half-century. Its theoretical and technological promise is vast, and we are only beginning to experience its potential. Clustering is the first and most basic application of fuzzy set theory, but forms the basis of many, more sophisticated, intelligent computational models, particularly in pattern recognition, data mining, adaptive and hierarchical clustering, and classifier design.
Beyond calculus, the world of mathematics grows increasingly abstract and places new and challenging demands on those venturing into that realm. As the focus of calculus instruction has become increasingly computational, it leaves many students ill prepared for more advanced work that requires the ability to understand and construct proofs.
Neutrices and External Numbers: A Flexible Number System introduces a new model of orders of magnitude and of error analysis, with particular emphasis on behaviour under algebraic operations. The model is formulated in terms of scalar neutrices and external numbers, in the form of an extension of the nonstandard set of real numbers. Many illustrative examples are given. The book starts with detailed presentation of the algebraic structure of external numbers, then deals with the generalized Dedekind completeness property, applications in analysis, domains of validity of approximations of solutions of differential equations, particularly singular perturbations. Finally, it describes the family of algebraic laws characterizing the practice of calculations with external numbers. Features Presents scalar neutrices and external numbers, a mathematical model of order of magnitude within the real number system. Outlines complete algebraic rules for the neutrices and external numbers Conducts operational analysis of convergence and integration of functions known up to orders of magnitude Formalises a calculus of error propagation, covariant with algebraic operations Presents mathematical models of phenomena incorporating their necessary imprecisions, in particular related to the Sorites paradox
As the amount of information recorded and stored electronically grows ever larger, it becomes increasingly useful, if not essential, to develop better and more efficient ways to summarize and extract information from these large, multivariate data sets. The field of classification does just that-investigates sets of "objects" to see if they can be summarized into a small number of classes comprising similar objects.
The language of ends and (co)ends provides a natural and general way of expressing many phenomena in category theory, in the abstract and in applications. Yet although category-theoretic methods are now widely used by mathematicians, since (co)ends lie just beyond a first course in category theory, they are typically only used by category theorists, for whom they are something of a secret weapon. This book is the first systematic treatment of the theory of (co)ends. Aimed at a wide audience, it presents the (co)end calculus as a powerful tool to clarify and simplify definitions and results in category theory and export them for use in diverse areas of mathematics and computer science. It is organised as an easy-to-cite reference manual, and will be of interest to category theorists and users of category theory alike.
Fuzzy set theory provides us with a framework which is wider than that of classical set theory. Various mathematical structures, whose features emphasize the effects of ordered structure, can be developed on the theory. Fuzzy topology is one such branch, combining ordered structure with topological structure. This branch of mathematics, emerged from the background - processing fuzziness, and locale theory, proposed from the angle of pure mathematics by the great French mathematician Ehresmann, comprise the two most active aspects of topology on lattice, which affect each other.This book is the first monograph to systematically reflect the up-to-date state of fuzzy topology. It emphasizes the so-called "pointed approach" and the effects of stratification structure appearing in fuzzy sets.The monograph can serve as a reference book for mathematicians, researchers, and graduate students working in this branch of mathematics. After an appropriate rearrangements of the chapters and sections, it can also be used as a text for undergraduates.
Classical and Fuzzy Concepts in Mathematical Logic and Applications provides a broad, thorough coverage of the fundamentals of two-valued logic, multivalued logic, and fuzzy logic. Exploring the parallels between classical and fuzzy mathematical logic, the book examines the use of logic in computer science, addresses questions in automatic deduction, and describes efficient computer implementation of proof techniques. Specific issues discussed include: oPropositional and predicate logic oLogic networks oLogic programming oProof of correctness oSemantics oSyntax oCompletenesss oNon-contradiction oTheorems of Herbrand and Kalman The authors consider that the teaching of logic for computer science is biased by the absence of motivations, comments, relevant and convincing examples, graphic aids, and the use of color to distinguish language and metalanguage. Classical and Fuzzy Concepts in Mathematical Logic and Applications discusses how the presence of these facts trigger a stirring, decisive insight into the understanding process. This view shapes this work, reflecting the authors' subjective balance between the scientific and pedagogic components of the textbook. Usually, problems in logic lack relevance, creating a gap between classroom learning and applications to real-life problems. The book includes a variety of application-oriented problems at the end of almost every section, including programming problems in PROLOG III. With the possibility of carrying out proofs with PROLOG III and other software packages, readers will gain a first-hand experience and thus a deeper understanding of the idea of formal proof. |
You may like...
Hypnosis and Imagination
Robert Kunzendorf, Nicholas Spanos, …
Hardcover
R4,138
Discovery Miles 41 380
Facts in Mesmerism - With Reasons for a…
Chauncy Hare Townshend
Paperback
R573
Discovery Miles 5 730
Photoplethysmography - Technology…
Panicos A. Kyriacou, John Allen
Paperback
R4,466
Discovery Miles 44 660
|