![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > Set theory
This book is about "diamond," a logic of paradox. In diamond, a statement can be true yet false; an "imaginary" state, midway between being and non-being. Diamond's imaginary values solve many logical paradoxes unsolvable in two-valued boolean logic. In this volume, paradoxes by Russell, Cantor, Berry and Zeno are all resolved. This book has three sections: Paradox Logic, which covers the classic paradoxes of mathematical logic, shows how they can be resolved in this new system; The Second Paradox, which relates diamond to Boolean logic and the Spencer-Brown "modulator"; and Metamathematical Dilemma, which relates diamond to Gdelian meta-mathematics and dilemma games.
Many of the modern variational problems in topology arise in different but overlapping fields of scientific study: mechanics, physics and mathematics. In this work, Professor Fomenko offers a concise and clean explanation of some of these problems (both solved and unsolved), using current methods and analytical topology. The author's skillful exposition gives an unusual motivation to the theory expounded, and his work is recommended reading for specialists and nonspecialists alike, involved in the fields of physics and mathematics at both undergraduate and graduate levels.
Nonlinear systems with stationary sets are important because they cover a lot of practical systems in engineering. Previous analysis has been based on the frequency-domain for this class of systems. However, few results on robustness analysis and controller design for these systems are easily available.This book presents the analysis as well as methods based on the global properties of systems with stationary sets in a unified time-domain and frequency-domain framework. The focus is on multi-input and multi-output systems, compared to previous publications which considered only single-input and single-output systems. The control methods presented in this book will be valuable for research on nonlinear systems with stationary sets.
The requirement to reason logically forms the basis of all mathematics, and hence mathematical logic is one of the most fundamental topics that students will study. Assuming no prior knowledge of the topic, this book provides an accessible introduction for advanced undergraduate students.
A compilation of articles about Intensionality in philosophy, logic, linguistics, and mathematics. The articles approach the concept of Intensionality from different perspectives. Some articles address philosophical issues raised by the possible worlds approach to intensionality; others are devoted to technical aspects of modal logic. The volume highlights the particular interdisciplinary nature of intensionality with articles spanning the areas of philosophy, linguistics, mathematics, and computer science.
A compilation of articles about Intensionality in philosophy, logic, linguistics, and mathematics. The articles approach the concept of Intensionality from different perspectives. Some articles address philosophical issues raised by the possible worlds approach to intensionality; others are devoted to technical aspects of modal logic. The volume highlights the particular interdisciplinary nature of intensionality with articles spanning the areas of philosophy, linguistics, mathematics, and computer science.
This book presents a study on the foundations of a large class of paraconsistent logics from the point of view of the logics of formal inconsistency. It also presents several systems of non-standard logics with paraconsistent features.
Neutrices and External Numbers: A Flexible Number System introduces a new model of orders of magnitude and of error analysis, with particular emphasis on behaviour under algebraic operations. The model is formulated in terms of scalar neutrices and external numbers, in the form of an extension of the nonstandard set of real numbers. Many illustrative examples are given. The book starts with detailed presentation of the algebraic structure of external numbers, then deals with the generalized Dedekind completeness property, applications in analysis, domains of validity of approximations of solutions of differential equations, particularly singular perturbations. Finally, it describes the family of algebraic laws characterizing the practice of calculations with external numbers. Features Presents scalar neutrices and external numbers, a mathematical model of order of magnitude within the real number system. Outlines complete algebraic rules for the neutrices and external numbers Conducts operational analysis of convergence and integration of functions known up to orders of magnitude Formalises a calculus of error propagation, covariant with algebraic operations Presents mathematical models of phenomena incorporating their necessary imprecisions, in particular related to the Sorites paradox
Originally published in 1973. This book is directed to the student of philosophy whose background in mathematics is very limited. The author strikes a balance between material of a philosophical and a formal kind, and does this in a way that will bring out the intricate connections between the two. On the formal side, he gives particular care to provide the basic tools from set theory and arithmetic that are needed to study systems of logic, setting out completeness results for two, three, and four valued logic, explaining concepts such as freedom and bondage in quantificational logic, describing the intuitionistic conception of the logical operators, and setting out Zermelo's axiom system for set theory. On the philosophical side, he gives particular attention to such topics as the problem of entailment, the import of the Loewenheim-Skolem theorem, the expressive powers of quantificational logic, the ideas underlying intuitionistic logic, the nature of set theory, and the relationship between logic and set theory. There are exercises within the text, set out alongside the theoretical ideas that they involve.
Over the past 20 years, the emergence of clone theory, hyperequational theory, commutator theory and tame congruence theory has led to a growth of universal algebra both in richness and in applications, especially in computer science. Yet most of the classic books on the subject are long out of print and, to date, no other book has integrated these theories with the long-established work that supports them.
Fuzzy Cluster Analysis presents advanced and powerful fuzzy clustering techniques. This thorough and self-contained introduction to fuzzy clustering methods and applications covers classification, image recognition, data analysis and rule generation. Combining theoretical and practical perspectives, each method is analysed in detail and fully illustrated with examples. Features include:
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff's classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff's initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics. The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Historical foreword on the centenary after Felix Hausdorff's classic Set Theory Fundamentals of the theory of functions Fundamentals of the measure theory Historical notes on the Riesz - Radon - Frechet problem of characterization of Radon integrals as linear functionals
In this volume, logic starts from the observation that in everyday arguments, as brought forward say by a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. This leads to Gentzen's calculi of derivations, presented first for positive logic and then, depending on the requirements made on the behaviour of negation, for minimal, intuitionist and classical logic. Identifying interdeducible formulas, each of these calculi gives rise to a lattice-like ordered structure. Describing the generation of filters in these structures leads to corresponding modus ponens calculi, and these turn out to be semantically complete because they express the algorithms generating semantical consequences, as obtained in Volume One of these lectures. The operators transforming derivations from one type of calculus into the other are also studied with respect to changes of the lengths of derivations, and operators eliminating defined predicate and function symbols are described expli
For propositional logic it can be decided whether a formula has a deduction from a finite set of other formulas. The present volume begins with a method to decide this for the quantified formulas of those fragments of arithmetic which express the properties of order-plus-successor and or order-plus-addition (Presburger arithmetic); it makes use of an algorithm eliminating quantifiers which, in turn, is also applied to obtain consistency proofs for these fragments. Stronger fragments of arithmetic, also containing multiplication, are sufficiently rich to express a primitive recursive encoding of terms, formulas and deductions, and this leads to Godel's theorem exhibiting statements already undecidable in these fragments. Its central idea, isolated in Tarski's fixpoint lemma, has a certain analogy with Eubulides' antinomy of the Liar, and in a non-technical chapter, accessible to a wider class of readers, this analogy is exploited for an informal discussion of undefinability and incompleteness. The technical tools required to verify the hypotheses on arithmetical representability, on the other hand, are collected in an independent presentation of recursive functions and relations.
Fuzzy set theory - and its underlying fuzzy logic - represents one of the most significant scientific and cultural paradigms to emerge in the last half-century. Its theoretical and technological promise is vast, and we are only beginning to experience its potential. Clustering is the first and most basic application of fuzzy set theory, but forms the basis of many, more sophisticated, intelligent computational models, particularly in pattern recognition, data mining, adaptive and hierarchical clustering, and classifier design.
Beyond calculus, the world of mathematics grows increasingly abstract and places new and challenging demands on those venturing into that realm. As the focus of calculus instruction has become increasingly computational, it leaves many students ill prepared for more advanced work that requires the ability to understand and construct proofs.
As the amount of information recorded and stored electronically grows ever larger, it becomes increasingly useful, if not essential, to develop better and more efficient ways to summarize and extract information from these large, multivariate data sets. The field of classification does just that-investigates sets of "objects" to see if they can be summarized into a small number of classes comprising similar objects.
Classical and Fuzzy Concepts in Mathematical Logic and Applications provides a broad, thorough coverage of the fundamentals of two-valued logic, multivalued logic, and fuzzy logic. Exploring the parallels between classical and fuzzy mathematical logic, the book examines the use of logic in computer science, addresses questions in automatic deduction, and describes efficient computer implementation of proof techniques. Specific issues discussed include: oPropositional and predicate logic oLogic networks oLogic programming oProof of correctness oSemantics oSyntax oCompletenesss oNon-contradiction oTheorems of Herbrand and Kalman The authors consider that the teaching of logic for computer science is biased by the absence of motivations, comments, relevant and convincing examples, graphic aids, and the use of color to distinguish language and metalanguage. Classical and Fuzzy Concepts in Mathematical Logic and Applications discusses how the presence of these facts trigger a stirring, decisive insight into the understanding process. This view shapes this work, reflecting the authors' subjective balance between the scientific and pedagogic components of the textbook. Usually, problems in logic lack relevance, creating a gap between classroom learning and applications to real-life problems. The book includes a variety of application-oriented problems at the end of almost every section, including programming problems in PROLOG III. With the possibility of carrying out proofs with PROLOG III and other software packages, readers will gain a first-hand experience and thus a deeper understanding of the idea of formal proof.
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff's classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff's initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann - Bernays - Godel and Zermelo - Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo - Fraenkel set theory Compactness theorem for generalized second-order language
Fuzzy set theory provides us with a framework which is wider than that of classical set theory. Various mathematical structures, whose features emphasize the effects of ordered structure, can be developed on the theory. Fuzzy topology is one such branch, combining ordered structure with topological structure. This branch of mathematics, emerged from the background - processing fuzziness, and locale theory, proposed from the angle of pure mathematics by the great French mathematician Ehresmann, comprise the two most active aspects of topology on lattice, which affect each other.This book is the first monograph to systematically reflect the up-to-date state of fuzzy topology. It emphasizes the so-called "pointed approach" and the effects of stratification structure appearing in fuzzy sets.The monograph can serve as a reference book for mathematicians, researchers, and graduate students working in this branch of mathematics. After an appropriate rearrangements of the chapters and sections, it can also be used as a text for undergraduates.
This introduction to mathematical logic takes G del's incompleteness theorem as a starting point. It goes beyond a standard text book and should interest everyone from mathematicians to philosophers and general readers who wish to understand the foundations and limitations of modern mathematics.
Keith Devlin. You know him. You've read his columns in MAA Online, you've heard him on the radio, and you've seen his popular mathematics books. In between all those activities and his own research, he's been hard at work revising Sets, Functions and Logic, his standard-setting text that has smoothed the road to pure mathematics for legions of undergraduate students. Now in its third edition, Devlin has fully reworked the book to reflect a new generation. The narrative is more lively and less textbook-like. Remarks and asides link the topics presented to the real world of students' experience. The chapter on complex numbers and the discussion of formal symbolic logic are gone in favor of more exercises, and a new introductory chapter on the nature of mathematics--one that motivates readers and sets the stage for the challenges that lie ahead. Students crossing the bridge from calculus to higher mathematics need and deserve all the help they can get. Sets, Functions, and Logic, Third Edition is an affordable little book that all of your transition-course students not only can afford, but will actually read and enjoy and learn from. About the Author Dr. Keith Devlin is Executive Director of Stanford University's Center for the Study of Language and Information and a Consulting Professor of Mathematics at Stanford. He has written 23 books, one interactive book on CD-ROM, and over 70 published research articles. He is a Fellow of the American Association for the Advancement of Science, a World Economic Forum Fellow, and a former member of the Mathematical Sciences Education Board of the National Academy of Sciences,. Dr. Devlin is also one of the world's leading popularizers of mathematics. Known as "The Math Guy" on NPR's Weekend Edition, he is a frequent contributor to other local and national radio and TV shows in the US and Britain, writes a monthly column for the Web journal MAA Online, and regularly writes on mathematics and co
This volume, which ten years ago appeared as the first in the acclaimed series Lecture Notes in Logic, serves as an introduction to recursion theory. The fundamental concept of recursion makes the idea of computability accessible to a mathematical analysis, thus forming one of the pillars on which modern computer science rests. The clarity and focus of this text have established it as a classic instrument for teaching and self-study that prepares its readers for the study of advanced monographs and the current literature on recursion theory.
A Bridge to Higher Mathematics is more than simply another book to aid the transition to advanced mathematics. The authors intend to assist students in developing a deeper understanding of mathematics and mathematical thought. The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems. The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof. The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof. For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn's lemma and the axiom of choice are included. More challenging problems are marked with a star. All these materials are optional, depending on the instructor and the goals of the course.
This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous applications in abstract geometry and real analysis and, in some cases, in topology and algebra. The book begins with a tour of the basics of set theory, culminating in a proof of Zorn's Lemma and a discussion of some of its applications. The author then develops the notions of transfinite induction and descriptive set theory, with applications to the theory of real functions. The final part of the book presents the tools of "modern" set theory: Martin's Axiom, the Diamond Principle, and elements of forcing. Written primarily as a text for beginning graduate or advanced level undergraduate students, this book should also interest researchers wanting to learn more about set theoretical techniques applicable to their fields. |
You may like...
Problems and Theorems in Classical Set…
Peter Komjath, Vilmos Totik
Hardcover
R2,162
Discovery Miles 21 620
Finitely Supported Mathematics - An…
Andrei Alexandru, Gabriel Ciobanu
Hardcover
Combinatorial Set Theory - With a Gentle…
Lorenz J. Halbeisen
Hardcover
R3,691
Discovery Miles 36 910
Fuzzy Systems - Modeling and Control
Hung T. Nguyen, Michio Sugeno
Hardcover
R5,434
Discovery Miles 54 340
Computability - Computable Functions…
Richard L. Epstein, Walter A. Carnielli
Hardcover
R1,215
Discovery Miles 12 150
|