![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Set theory
Philosophical considerations, which are often ignored or treated casually, are given careful consideration in this introduction. Thomas Forster places the notion of inductively defined sets (recursive datatypes) at the center of his exposition resulting in an original analysis of well established topics. The presentation illustrates difficult points and includes many exercises. Little previous knowledge of logic is required and only a knowledge of standard undergraduate mathematics is assumed.
In one of the finest treatments for upper undergraduate and graduate level students, Professor Suppes presents axiomatic set theory: the basic paradoxes and history of set theory, and advanced topics such as relations and functions, equipollence, finite sets and cardinal numbers, rational and real numbers and more. Exercises. References. Indexes.
Lucidly and gradually explains sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and first-order theories. Its clarity makes this book excellent for self-study.
This unified approach to the foundations of mathematics in the theory of sets covers both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of "natural number" and "set". The book contains an investigation of the logic of quantification over the universe of sets and a discussion of its role in second order logic, and the analysis of proof by induction and definition by recursion. The book should appeal to both philosophers and mathematicians with an interest in the foundations of mathematics.
This is a classic introduction to set theory, suitable for students with no previous knowledge of the subject. Providing complete, up-to-date coverage, the book is based in large part on courses given over many years by Professor Hajnal. The first part introduces all the standard notions of the subject; the second part concentrates on combinatorial set theory. Exercises are included throughout and a new section of hints has been added to assist the reader.
This volume compiles geostatistical and spatial autoregressive data analyses involving georeferenced socioeconomic, natural resources, agricultural, pollution, and epidemiological variables. Benchmark analyses are followed by analyses of readily available data sets, emphasizing parallels between geostatistical and spatial autoregressive findings. Both SAS and SPSS code are presented for implementation purposes. This informative casebook will serve geographers, regional scientists, applied spatial statisticians, and spatial scientists from across disciplines.
The Philosophy of Mathematics Today gives a panorama of the best current work in this lively field, through twenty essays specially written for this collection by leading figures. The topics include indeterminacy, logical consequence, mathematical methodology, abstraction, and both Hilbert's and Frege's foundational programmes. The collection will be an important source for research in the philosophy of mathematics for years to come. Contributors Paul Benacerraf, George Boolos, John P. Burgess, Charles S. Chihara, Michael Detlefsen, Michael Dummett, Hartry Field, Kit Fine, Bob Hale, Richard G. Heck, Jnr., Geoffrey Hellman, Penelope Maddy, Karl-Georg Niebergall, Charles D. Parsons, Michael D. Resnik, Matthias Schirn, Stewart Shapiro, Peter Simons, W.W. Tait, Crispin Wright.
Ordered structures have been increasingly recognized in recent years due to an explosion of interest in theoretical computer science and all areas of discrete mathematics. This book covers areas such as ordered sets and lattices. A key feature of ordered sets, one which is emphasized in the text, is that they can be represented pictorially. Lattices are also considered as algebraic structures and hence a purely algebraic study is used to reinforce the ideas of homomorphisms and of ideals encountered in group theory and ring theory. Exposure to elementary abstract algebra and the rotation of set theory are the only prerequisites for this text. For the new edition, much has been rewritten or expanded and new exercises have been added.
In this book the authors present their research into the foundations of the theory of Polish groups and the associated orbit equivalence relations. The particular case of locally compact groups has long been studied in many areas of mathematics. Non-locally compact Polish groups occur naturally as groups of symmetries in such areas as logic (especially model theory), ergodic theory, group representations, and operator algebras. Some of the topics covered here are: topological realizations of Borel measurable actions; universal actions; applications to invariant measures; actions of the infinite symmetric group in connection with model theory (logic actions); dichotomies for orbit spaces (including Silver, Glimm-Effros type dichotomies and the topological Vaught conjecture); descriptive complexity of orbit equivalence relations; definable cardinality of orbit spaces.
This book offers a new algebraic approach to set theory. The authors introduce a particular kind of algebra, the Zermelo-Fraenkel algebras, which arise from the familiar axioms of Zermelo-Fraenkel set theory. Furthermore, the authors explicitly construct these algebras using the theory of bisimulations. Their approach is completely constructive, and contains both intuitionistic set theory and topos theory. In particular it provides a uniform description of various constructions of the cumulative hierarchy of sets in forcing models, sheaf models and realizability models. Graduate students and researchers in mathematical logic, category theory and computer science should find this book of great interest, and it should be accessible to anyone with a background in categorical logic.
The authors present some surprising connections that sets of uniqueness for trigonometic series have with descriptive set theory. They present many new results concerning the structure of sets of uniqueness and include solutions to some of the classical problems in this area. Topics covered include symmetric perfect sets and the solution to the Borel Basis Problem for U, the class of sets of uniqueness. To make the material accessible to both logicians, set theorists and analysts, the authors have covered in some detail large parts of the classical and modern theory of sets of uniqueness as well as the relevant parts of descriptive set theory. Because the book is essentially selfcontained and requires the minimum prerequisites, it will serve as an excellent introduction to the subject for graduate students and research workers in set theory and analysis.
Following the success of Logic for Mathematicians, Dr Hamilton has written a text for mathematicians and students of mathematics that contains a description and discussion of the fundamental conceptual and formal apparatus upon which modern pure mathematics relies. The author's intention is to remove some of the mystery that surrounds the foundations of mathematics. He emphasises the intuitive basis of mathematics; the basic notions are numbers and sets and they are considered both informally and formally. The role of axiom systems is part of the discussion but their limitations are pointed out. Formal set theory has its place in the book but Dr Hamilton recognises that this is a part of mathematics and not the basis on which it rests. Throughout, the abstract ideas are liberally illustrated by examples so this account should be well-suited, both specifically as a course text and, more broadly, as background reading. The reader is presumed to have some mathematical experience but no knowledge of mathematical logic is required.
One of the greatest revolutions in mathematics occurred when Georg Cantor (1845-1918) promulgated his theory of transfinite sets. This revolution is the subject of Joseph Dauben's important studythe most thorough yet writtenof the philosopher and mathematician who was once called a "corrupter of youth" for an innovation that is now a vital component of elementary school curricula. Set theory has been widely adopted in mathematics and philosophy, but the controversy surrounding it at the turn of the century remains of great interest. Cantor's own faith in his theory was partly theological. His religious beliefs led him to expect paradoxes in any concept of the infinite, and he always retained his belief in the utter veracity of transfinite set theory. Later in his life, he was troubled by recurring attacks of severe depression. Dauben shows that these played an integral part in his understanding and defense of set theory.
This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo-Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.
Suitable for upper-level undergraduates, this accessible approach
to set theory poses rigorous but simple arguments. Each definition
is accompanied by commentary that motivates and explains new
concepts. Starting with a repetition of the familiar arguments of
elementary set theory, the level of abstract thinking gradually
rises for a progressive increase in complexity.
In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety--and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups--as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kahler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others."
Writing with clear knowledge and affection for the subject, the author introduces and explores infinite sets, infinite cardinals, and ordinals, thus challenging the readers' intuitive beliefs about infinity. Requiring little mathematical training and a healthy curiosity, the book presents a user-friendly approach to ideas involving the infinite. Readers will discover the main ideas of infinite cardinals and ordinal numbers without experiencing in-depth mathematical rigor. Classic arguments and illustrative examples are provided throughout the book and are accompanied by a gradual progression of sophisticated notions designed to stun your intuitive view of the world. Infinity, we are told, is as large as things get. This is not entirely true. This book does not refer to "infinities, " but rather to "cardinals." This is to emphasize the point that what you thought you knew about infinity is probably incorrect or imprecise. Since the reader is assumed to be educated in mathematics, but not necessarily mathematically trained, an attempt has been made to convince the reader of the truth of a matter without resorting to the type of rigor found in professional journals. Therefore, the author has accompanied the proofs with illustrative examples. The examples are often a part of a larger proof. Important facts are included and their proofs have been excluded if the author has determined that the proof is beyond the scope of the discussion. For example, it is assumed and not proven within the book that a collection of cardinals is larger than any set or mathematical object. The topics covered within the book cannot be found within any other one book on infinity, and the work succeeds in being the only book on infinite cardinals for the high school educated person. Topical coverage includes: logic and sets; functions; counting infinite sets; infinite cardinals; well ordered sets; inductions and numbers; prime numbers; and logic and meta-mathematics.
This book provides an introduction to axiomatic set theory and descriptive set theory. It is written for the upper level undergraduate or beginning graduate students to help them prepare for advanced study in set theory and mathematical logic as well as other areas of mathematics, such as analysis, topology, and algebra.The book is designed as a flexible and accessible text for a one-semester introductory course in set theory, where the existing alternatives may be more demanding or specialized. Readers will learn the universally accepted basis of the field, with several popular topics added as an option. Pointers to more advanced study are scattered throughout the text.
Kurt Godel, mathematician and logician, was one of the most influential thinkers of the twentieth century. Godel fled Nazi Germany, fearing for his Jewish wife and fed up with Nazi interference in the affairs of the mathematics institute at the University of Gottingen. In 1933 he settled at the Institute for Advanced Study in Princeton, where he joined the group of world-famous mathematicians who made up its original faculty. His 1940 book, better known by its short title, "The Consistency of the Continuum Hypothesis," is a classic of modern mathematics. The continuum hypothesis, introduced by mathematician George Cantor in 1877, states that there is no set of numbers between the integers and real numbers. It was later included as the first of mathematician David Hilbert's twenty-three unsolved math problems, famously delivered as a manifesto to the field of mathematics at the International Congress of Mathematicians in Paris in 1900. In "The Consistency of the Continuum Hypothesis" Godel set forth his proof for this problem. In 1999, "Time" magazine ranked him higher than fellow scientists Edwin Hubble, Enrico Fermi, John Maynard Keynes, James Watson, Francis Crick, and Jonas Salk. He is most renowned for his proof in 1931 of the 'incompleteness theorem, ' in which he demonstrated that there are problems that cannot be solved by any set of rules or procedures. His proof wrought fruitful havoc in mathematics, logic, and beyond."
If you want top grades and thorough understanding of set theory and related topics, this powerful study tool is the best tutor you can have! It takes you step-by-step through the subject and gives you 530 accompanying related problems with fully worked solutions. You also get plenty of practice problems to do on your own, working at your own speed. (Answers at the back show you how youre doing.) This new edition features improved problems in the ordinals, cardinals, and transfinite series chapters, plus new coverage of real numbers and integers.
Set theory is a rich and beautiful subject whose fundamental concepts permeate virtually every branch of mathematics. One could say that set theory is a unifying theory for mathematics, since nearly all mathematical concepts and results can be formalized within set theory. This textbook is meant for an upper undergraduate course in set theory. In this text, the fundamentals of abstract sets, including relations, functions, the natural numbers, order, cardinality, transfinite recursion, the axiom of choice, ordinal numbers, and cardinal numbers, are developed within the framework of axiomatic set theory. The reader will need to be comfortable reading and writing mathematical proofs. The proofs in this textbook are rigorous, clear, and complete, while remaining accessible to undergraduates who are new to upper-level mathematics. Exercises are included at the end of each section in a chapter, with useful suggestions for the more challenging exercises.
Beginning with a general discussion of bordism, Professors Madsen and Milgram present the homotopy theory of the surgery classifying spaces and the classifying spaces for the various required bundle theories. The next part covers more recent work on the maps between these spaces and the properties of the PL and Top characteristic classes, and includes integrality theorems for topological and PL manifolds. Later chapters treat the integral cohomology of BPL and Btop. The authors conclude with a discussion of the PL and topological cobordism rings and a construction of the torsion-free generators.
This book contains twenty-one essays by leading authorities on aspects of contemporary logic, ranging from foundations of set theory to applications of logic in computing and in the theory of fields. In those parts of logic closest to computer science, the gap between foundations and applications is often small, as illustrated by three essays on the proof theory of non-classical logics. There are also chapters on the lambda calculus, on relating logic programs to inductive definitions, on Buechi and Presburger arithmetics, and on definability in Lindenbaum algebras. Aspects of constructive mathematics discussed are embeddings of Heyting algebras and proofs in mathematical anslysis. Set theory is well covered with six chapters discussing Cohen forcing, Baire category, determinancy, Nash-Williams theory, critical points (and the remarkable connection between them and properties of left distributive operations) and independent structures. The longest chapter in the book is a survey of 0-minimal structures, by Lou van den Dries; during the last ten years these structures have come to take a central place in applications of model theory to fields and function theory, and this chapter is the first broad survey of the area. Other chapters illustrate how to apply model theory to field theory, complex geometry and groups, and how to recover from its automorphism group. Finally, one chapter applies to the theory of toric varieties to solve problems about many-valued logics.
This two-volume work bridges the gap between introductory expositions of logic or set theory on one hand, and the research literature on the other. It can be used as a text in an advanced undergraduate or beginning graduate course in mathematics, computer science, or philosophy. The volumes are written in a user-friendly conversational lecture style that makes them equally effective for self-study or class use. Volume II, on formal (ZFC) set theory, incorporates a self-contained 'chapter 0' on proof techniques so that it is based on formal logic, in the style of Bourbaki. The emphasis on basic techniques will provide the reader with a solid foundation in set theory and provides a context for the presentation of advanced topics such as absoluteness, relative consistency results, two expositions of Godel's constructible universe, numerous ways of viewing recursion, and a chapter on Cohen forcing. |
![]() ![]() You may like...
Algebra and Geometry with Python
Sergei Kurgalin, Sergei Borzunov
Hardcover
R2,701
Discovery Miles 27 010
Principled Software Development - Essays…
Peter Muller, Ina Schaefer
Hardcover
R2,915
Discovery Miles 29 150
Fundamentals of Algebraic Graph…
Hartmut Ehrig, Karsten Ehrig, …
Hardcover
R3,428
Discovery Miles 34 280
Concrete Semantics - With Isabelle/HOL
Tobias Nipkow, Gerwin Klein
Hardcover
R2,769
Discovery Miles 27 690
Analytic Combinatorics for Multiple…
Roy Streit, Robert Blair Angle, …
Hardcover
R3,626
Discovery Miles 36 260
Advanced Topics in Bisimulation and…
Davide Sangiorgi, Jan Rutten
Hardcover
R3,404
Discovery Miles 34 040
Nature-Inspired Metaheuristic Algorithms…
Serdar Carbas, Abdurrahim Toktas, …
Hardcover
R5,633
Discovery Miles 56 330
International Symposium on Mathematics…
Tsuyoshi Takagi, Masato Wakayama, …
Hardcover
R1,671
Discovery Miles 16 710
Refinement in Z and Object-Z…
John Derrick, Eerke A. Boiten
Hardcover
|