![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > Set theory
Set theory is a branch of mathematics with a special subject matter, the infinite, but also a general framework for all modern mathematics, whose notions figure in every branch, pure and applied. This Element will offer a concise introduction, treating the origins of the subject, the basic notion of set, the axioms of set theory and immediate consequences, the set-theoretic reconstruction of mathematics, and the theory of the infinite, touching also on selected topics from higher set theory, controversial axioms and undecided questions, and philosophical issues raised by technical developments.
This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory (also known as higher-order intuitionistic logic), an important form of type theory based on intuitionistic logic. In Section 4 number of contemporary forms of type theory are described, all of which are based on the so-called 'doctrine of propositions as types'. We conclude with an Appendix in which the semantics for Local Set Theory - based on category theory - is outlined.
This Element takes a deep dive into Goedel's 1931 paper giving the first presentation of the Incompleteness Theorems, opening up completely passages in it that might possibly puzzle the student, such as the mysterious footnote 48a. It considers the main ingredients of Goedel's proof: arithmetization, strong representability, and the Fixed Point Theorem in a layered fashion, returning to their various aspects: semantic, syntactic, computational, philosophical and mathematical, as the topic arises. It samples some of the most important proofs of the Incompleteness Theorems, e.g. due to Kuratowski, Smullyan and Robinson, as well as newer proofs, also of other independent statements, due to H. Friedman, Weiermann and Paris-Harrington. It examines the question whether the incompleteness of e.g. Peano Arithmetic gives immediately the undecidability of the Entscheidungsproblem, as Kripke has recently argued. It considers set-theoretical incompleteness, and finally considers some of the philosophical consequences considered in the literature.
This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory.
The global biodiversity crisis is one of humanity's most urgent problems, but even quantifying biological diversity is a difficult mathematical and conceptual challenge. This book brings new mathematical rigour to the ongoing debate. It was born of research in category theory, is given strength by information theory, and is fed by the ancient field of functional equations. It applies the power of the axiomatic method to a biological problem of pressing concern, but it also presents new theorems that stand up as mathematics in their own right, independently of any application. The question 'what is diversity?' has surprising mathematical depth, and this book covers a wide breadth of mathematics, from functional equations to geometric measure theory, from probability theory to number theory. Despite this range, the mathematical prerequisites are few: the main narrative thread of this book requires no more than an undergraduate course in analysis.
In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.
The global biodiversity crisis is one of humanity's most urgent problems, but even quantifying biological diversity is a difficult mathematical and conceptual challenge. This book brings new mathematical rigour to the ongoing debate. It was born of research in category theory, is given strength by information theory, and is fed by the ancient field of functional equations. It applies the power of the axiomatic method to a biological problem of pressing concern, but it also presents new theorems that stand up as mathematics in their own right, independently of any application. The question 'what is diversity?' has surprising mathematical depth, and this book covers a wide breadth of mathematics, from functional equations to geometric measure theory, from probability theory to number theory. Despite this range, the mathematical prerequisites are few: the main narrative thread of this book requires no more than an undergraduate course in analysis.
This quick yet detailed introduction to set theory and forcing builds the reader's intuition about it as much as the mathematical detail. Intuition, rather absent from the existing literature on the subject, here plays a large role. The reader will not only learn the facts, but will understand why they are true and will be brought to ask: what else could be true? Having presented forcing in Part I, the second part of the book discusses contemporary issues in the theory of forcing. It includes known and some previously unpublished results as well as many open questions. This is ideal for those who want to start a research career in forcing but do not have a personal interlocutor. Obviously, not everything about forcing is in this book. Many references are included to help the reader further explore the vast amount of research literature available on the subject.
This quick yet detailed introduction to set theory and forcing builds the reader's intuition about it as much as the mathematical detail. Intuition, rather absent from the existing literature on the subject, here plays a large role. The reader will not only learn the facts, but will understand why they are true and will be brought to ask: what else could be true? Having presented forcing in Part I, the second part of the book discusses contemporary issues in the theory of forcing. It includes known and some previously unpublished results as well as many open questions. This is ideal for those who want to start a research career in forcing but do not have a personal interlocutor. Obviously, not everything about forcing is in this book. Many references are included to help the reader further explore the vast amount of research literature available on the subject.
The proceedings of the Los Angeles Caltech-UCLA 'Cabal Seminar' were originally published in the 1970s and 1980s. Large Cardinals, Determinacy and Other Topics is the final volume in a series of four books collecting the seminal papers from the original volumes together with extensive unpublished material, new papers on related topics and discussion of research developments since the publication of the original volumes. This final volume contains Parts VII and VIII of the series. Part VII focuses on 'Extensions of AD, models with choice', while Part VIII ('Other topics') collects material important to the Cabal that does not fit neatly into one of its main themes. These four volumes will be a necessary part of the book collection of every set theorist.
Lucidly and gradually explains sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and first-order theories. Its clarity makes this book excellent for self-study.
Proofs play a central role in advanced mathematics and theoretical computer science, yet many students struggle the first time they take a course in which proofs play a significant role. This bestselling text's third edition helps students transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. Featuring over 150 new exercises and a new chapter on number theory, this new edition introduces students to the world of advanced mathematics through the mastery of proofs. The book begins with the basic concepts of logic and set theory to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for an analysis of techniques that can be used to build up complex proofs step by step, using detailed 'scratch work' sections to expose the machinery of proofs about numbers, sets, relations, and functions. Assuming no background beyond standard high school mathematics, this book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and, of course, mathematicians.
Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.
Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.
This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo-Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis.
Infinitary logic, the logic of languages with infinitely long conjunctions, plays an important role in model theory, recursion theory and descriptive set theory. This book is the first modern introduction to the subject in forty years, and will bring students and researchers in all areas of mathematical logic up to the threshold of modern research. The classical topics of back-and-forth systems, model existence techniques, indiscernibles and end extensions are covered before more modern topics are surveyed. Zilber's categoricity theorem for quasiminimal excellent classes is proved and an application is given to covers of multiplicative groups. Infinitary methods are also used to study uncountable models of counterexamples to Vaught's conjecture, and effective aspects of infinitary model theory are reviewed, including an introduction to Montalban's recent work on spectra of Vaught counterexamples. Self-contained introductions to effective descriptive set theory and hyperarithmetic theory are provided, as is an appendix on admissible model theory.
Essentials of Mathematical Thinking addresses the growing need to better comprehend mathematics today. Increasingly, our world is driven by mathematics in all aspects of life. The book is an excellent introduction to the world of mathematics for students not majoring in mathematical studies.
The Banach-Tarski Paradox is a most striking mathematical construction: it asserts that a solid ball can be taken apart into finitely many pieces that can be rearranged using rigid motions to form a ball twice as large. This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, set theory, and logic. This new edition of a classic book unifies contemporary research on the paradox. It has been updated with many new proofs and results, and discussions of the many problems that remain unsolved. Among the new results presented are several unusual paradoxes in the hyperbolic plane, one of which involves the shapes of Escher's famous 'Angel and Devils' woodcut. A new chapter is devoted to a complete proof of the remarkable result that the circle can be squared using set theory, a problem that had been open for over sixty years.
This volume takes its name from a popular series of intensive mathematics workshops hosted at institutions in Appalachia and surrounding areas. At these meetings, internationally prominent set theorists give one-day lectures that focus on important new directions, methods, tools and results so that non-experts can begin to master these and incorporate them into their own research. Each chapter in this volume was written by the workshop leaders in collaboration with select student participants, and together they represent most of the meetings from the period 2006-2012. Topics covered include forcing and large cardinals, descriptive set theory, and applications of set theoretic ideas in group theory and analysis, making this volume essential reading for a wide range of researchers and graduate students.
This 2001 book presents a unified approach to the foundations of mathematics in the theory of sets, covering both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of 'natural number' and 'set'. This leads to an investigation of the logic of quantification over the universe of sets and a discussion of its role in second order logic, as well as in the analysis of proof by induction and definition by recursion. The subject matter of the book falls on the borderline between philosophy and mathematics, and should appeal to both philosophers and mathematicians with an interest in the foundations of mathematics.
This book is an introduction to modern cardinal arithmetic, developed in the frame of the axioms of Zermelo-Fraenkel set theory together with the axiom of choice. It splits into three parts. Part one, which is contained in Chapter 1, describes the classical cardinal arithmetic due to Bernstein, Cantor, Hausdorff, Konig, and Tarski. The results were found in the years between 1870 and 1930. Part two, which is Chapter 2, characterizes the development of cardinal arith metic in the seventies, which was led by Galvin, Hajnal, and Silver. The third part, contained in Chapters 3 to 9, presents the fundamental investigations in pcf-theory which has been developed by S. Shelah to answer the questions left open in the seventies. All theorems presented in Chapter 3 and Chapters 5 to 9 are due to Shelah, unless otherwise stated. We are greatly indebted to all those set theorists whose work we have tried to expound. Concerning the literature we owe very much to S. Shelah's book [Sh5] and to the article by M. R. Burke and M. Magidor [BM] which also initiated our students' interest for Shelah's pcf-theory.
Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set theory. Potter offers a strikingly simple version of the most widely accepted response to the paradoxes, which classifies sets by means of a hierarchy of levels. What makes the book unique is that it interweaves a careful presentation of the technical material with a penetrating philosophical critique. Potter does not merely expound the theory dogmatically but at every stage discusses in detail the reasons that can be offered for believing it to be true. Set Theory and its Philosophy is a key text for philosophy, mathematical logic, and computer science.
Philosophical considerations, which are often ignored or treated casually, are given careful consideration in this introduction. Thomas Forster places the notion of inductively defined sets (recursive datatypes) at the center of his exposition resulting in an original analysis of well established topics. The presentation illustrates difficult points and includes many exercises. Little previous knowledge of logic is required and only a knowledge of standard undergraduate mathematics is assumed.
The Philosophy of Mathematics Today gives a panorama of the best current work in this lively field, through twenty essays specially written for this collection by leading figures. The topics include indeterminacy, logical consequence, mathematical methodology, abstraction, and both Hilbert's and Frege's foundational programmes. The collection will be an important source for research in the philosophy of mathematics for years to come. Contributors Paul Benacerraf, George Boolos, John P. Burgess, Charles S. Chihara, Michael Detlefsen, Michael Dummett, Hartry Field, Kit Fine, Bob Hale, Richard G. Heck, Jnr., Geoffrey Hellman, Penelope Maddy, Karl-Georg Niebergall, Charles D. Parsons, Michael D. Resnik, Matthias Schirn, Stewart Shapiro, Peter Simons, W.W. Tait, Crispin Wright. |
You may like...
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,290
Discovery Miles 22 900
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
Almost Automorphic and Almost Periodic…
Gaston M N'Gu er ekata
Hardcover
R2,728
Discovery Miles 27 280
Real-World Evidence in Drug Development…
Harry Yang, Binbing Yu
Hardcover
R3,708
Discovery Miles 37 080
|