![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Set theory
The chief purpose of the book is to present, in detail, a compilation of proofs of the Cantor-Bernstein Theorem (CBT) published through the years since the 1870's. Over thirty such proofs are surveyed. The book comprises five parts. In the first part the discussion covers the role of CBT and related notions in the writings of Cantor and Dedekind. New views are presented, especially regarding the general proof of CBT obtained by Cantor, his proof of the Comparability Theorem, the ruptures in the Cantor-Dedekind correspondence and the origin of Dedekind's proof of CBT. The second part covers the first CBT proofs published (1896-1901). The works of the following mathematicians is considered in detail: Schroder, Bernstein, Bore, Schoenflies and Zermelo. Here a subtheme of the book is launched; it concerns the research project following Bernstein's Division Theorem (BDT). In its third part the book covers proofs that emerged during the period when the logicist movement was developed (1902-1912). It covers the works of Russell and Whitehead, Jourdain, Harward, Poincare, J. Konig, D. Konig (his results in graph theory), Peano, Zermelo, Korselt. Also Hausdorff's paradox is discussed linking it to BDT. In the fourth part of the book are discussed the developments of CBT and BDT (including the inequality-BDT) in the hands of the mathematicians of the Polish School of Logic, including Sierpi ski, Banach, Tarski, Lindenbaum, Kuratowski, Sikorski, Knaster, the British Whittaker, and Reichbach. Finally, in the fifth part, the main discussion concentrates on the attempts to port CBT to intuitionist mathematics (with results by Brouwer, Myhill, van Dalen and Troelstra) and to Category Theory (by Trnkova and Koubek).The second purpose of the book is to develop a methodology for the comparison of proofs. The core idea of this methodology is that a proof can be described by two descriptors, called gestalt and metaphor. It is by comparison of their descriptors that the comparison of proofs is obtained. The process by which proof descriptors are extracted from a proof is named 'proof-processing', and it is conjectured that mathematicians perform proof-processing habitually, in the study of proofs.
Information is precious. It reduces our uncertainty in making decisions. Knowledge about the outcome of an uncertain event gives the possessor an advantage. It changes the course of lives, nations, and history itself. Information is the food of Maxwell's demon. His power comes from know ing which particles are hot and which particles are cold. His existence was paradoxical to classical physics and only the realization that information too was a source of power led to his taming. Information has recently become a commodity, traded and sold like or ange juice or hog bellies. Colleges give degrees in information science and information management. Technology of the computer age has provided access to information in overwhelming quantity. Information has become something worth studying in its own right. The purpose of this volume is to introduce key developments and results in the area of generalized information theory, a theory that deals with uncertainty-based information within mathematical frameworks that are broader than classical set theory and probability theory. The volume is organized as follows."
This is the first book presenting cardinality theory of fuzzy sets with triangular norms, including its scalar and "fuzzy" streams. This theory constitutes not only a powerful basis but also a useful tool for modelling and processing vague and imprecise quantitative information. The multiple application areas of the theory encompass computer science, soft computing, computing with words, and decision-making. Starting with a presentation of the fundamentals of triangular norms and fuzzy set theory, the book offers a self-contained, concise and systematic exposition of cardinalities of fuzzy sets that includes many examples.
This is a comprehensive introduction into the method of inverse spectra - a powerful method successfully employed in various branches of topology. The notion of an inverse sequence and its limits, first appeared in the well-known memoir by Alexandrov where a special case of inverse spectra - the so-called projective spectra - were considered. The concept of an inverse spectrum in its present form was first introduced by Lefschetz. Meanwhile, Freudental, had introduced the notion of a morphism of inverse spectra. The foundations of the entire method of inverse spectra were laid down in these basic works. Subsequently, inverse spectra began to be widely studied and applied, not only in the various major branches of topology, but also in functional analysis and algebra. This is not surprising considering the categorical nature of inverse spectra and the extraordinary power of the related techniques. Updated surveys (including proofs of several statements) of the Hilbert cube and Hilbert space manifold theories are included in the book. Recent developments of the Menger and Nobeling manifold theories are also presented. This work significantly extends and updates the author's previously published book and has been completely rewritten in order to incorporate new developments in the field.
*An emphasis on the art of proof. *Enhanced number theory chapter presents some easily accessible but still-unsolved problems. These include the Goldbach conjecture, the twin-prime conjecture, and so forth. *The discussion of equivalence relations is revised to present reflexivity, symmetry, and transitivity before we define equivalence relations. *The discussion of the RSA cryptosystem in Chapter 10 is expanded. *The author introduces groups much earlier, as this is an incisive example of an axiomatic theory. Coverage of group theory, formerly in Chapter 11, has been moved up, this is an incisive example of an axiomatic theory.
This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. It aims to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named 'fuzzy inference' can be naturally understood as logical deduction. It is for mathematicians, logicians, computer scientists, specialists in artificial intelligence and knowledge engineering, and developers of fuzzy logic.
Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on the well-known classical Proportional-Integral-Derivative (PID) controllers theory and design methods. In particular, the text discusses fuzzy PID controllers in detail, including a description of the new notion of generalized verb-based fuzzy-logic control theory. Introduction to Fuzzy Systems is primarily designed to provide training for systems and control majors, both senior undergraduate and first year graduate students, to acquaint them with the fundamental mathematical theory and design methodology required to understand and utilize fuzzy control systems.
A compilation of papers presented at the 2003 European Summer Meeting of the Association for Symbolic Logic, Logic Colloquium '03 includes tutorials and research articles from some of the world's preeminent logicians. One article is a tutorial on finite model theory and query languages that lie between first order and second order logic. The other articles cover current research topics in all areas of mathematical logic, including Proof Theory, Set Theory, Model Theory, and Computability Theory, and Philosophy.
This ambitious exposition by Malik and Mordeson on the fuzzification of discrete structures not only supplies a solid basic text on this key topic, but also serves as a viable tool for learning basic fuzzy set concepts "from the ground up" due to its unusual lucidity of exposition. While the entire presentation of this book is in a completely traditional setting, with all propositions and theorems provided totally rigorous proofs, the readability of the presentation is not compromised in any way; in fact, the many ex cellently chosen examples illustrate the often tricky concepts the authors address. The book's specific topics - including fuzzy versions of decision trees, networks, graphs, automata, etc. - are so well presented, that it is clear that even those researchers not primarily interested in these topics will, after a cursory reading, choose to return to a more in-depth viewing of its pages. Naturally, when I come across such a well-written book, I not only think of how much better I could have written my co-authored monographs, but naturally, how this work, as distant as it seems to be from my own area of interest, could nevertheless connect with such. Before presenting the briefest of some ideas in this direction, let me state that my interest in fuzzy set theory (FST) has been, since about 1975, in connecting aspects of FST directly with corresponding probability concepts. One chief vehicle in carrying this out involves the concept of random sets."
Game theory has already proved its tremendous potential for con?ict resolution problems in the ?elds of Decision Theory and Economics. In the recent past, there have been attempts to extend the results of crisp game theory to those con?ict resolution problems which are fuzzy in nature e.g. Nishizaki and Sakawa [61] and references cited there in. These developments have lead to the emergence of a new area in the literature called fuzzy games. Another area in the fuzzy decision theory, which has been growing very fast is the area of fuzzy mathematical programming and its applications to various branches of sciences, Engineering and Management. In the crisp scenario, there exists a beautiful relationship between two person zero sum matrix game theory and duality in linear p- gramming. It is therefore natural to ask if something similar holds in the fuzzy scenario as well. This discussion essentially constitutes the core of our presentation. The objective of this book is to present a systematic and focussed study of the application of fuzzy sets to two very basic areas of decision theory, namely Mathematical Programming and Matrix Game Theory.
Introduction to Fuzzy Reliability treats fuzzy methodology in hardware reliability and software reliability in a relatively systematic manner. The contents of this book are organized as follows. Chapter 1 places reliability engineering in the scope of a broader area, i.e. system failure engineering. Readers will find that although this book is confined to hardware and software reliability, it may be useful for other aspects of system failure engineering, like maintenance and quality control. Chapter 2 contains the elementary knowledge of fuzzy sets and possibility spaces which are required reading for the rest of this book. This chapter is included for the overall completeness of the book, but a few points (e.g. definition of conditional possibility and existence theorem of possibility space) may be new. Chapter 3 discusses how to calculate probist system reliability when the component reliabilities are represented by fuzzy numbers, and how to analyze fault trees when probabilities of basic events are fuzzy. Chapter 4 presents the basic theory of profust reliability, whereas Chapter 5 analyzes the profust reliability behavior of a number of engineering systems. Chapters 6 and 7 are devoted to probist reliability theory from two different perspectives. Chapter 8 discusses how to model software reliability behavior by using fuzzy methodology. Chapter 9 includes a number of mathematical problems which are raised by applications of fuzzy methodology in hardware and software reliability, but may be important for fuzzy set and possibility theories.
In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n," "U," "+" and ."" over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility." The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy," motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character."
Since the late 1980s, a large number of very user-friendly tools for fuzzy control, fuzzy expert systems, and fuzzy data analysis have emerged. This has changed the character of this area and started the area of `fuzzy technology'. The next large step in the development occurred in 1992 when almost independently in Europe, Japan and the USA, the three areas of fuzzy technology, artificial neural nets and genetic algorithms joined forces under the title of `computational intelligence' or `soft computing'. The synergies which were possible between these three areas have been exploited very successfully. Practical Applications of Fuzzy Sets focuses on model and real applications of fuzzy sets, and is structured into four major parts: engineering and natural sciences; medicine; management; and behavioral, cognitive and social sciences. This book will be useful for practitioners of fuzzy technology, scientists and students who are looking for applications of their models and methods, for topics of their theses, and even for venture capitalists who look for attractive possibilities for investments.
The axiomatic theory of sets is a vibrant part of pure mathematics, with its own basic notions, fundamental results, and deep open problems. It is also viewed as a foundation of mathematics so that "to make a notion precise" simply means "to define it in set theory." This book gives a solid introduction to "pure set theory" through transfinite recursion and the construction of the cumulative hierarchy of sets, and also attempts to explain how mathematical objects can be faithfully modeled within the universe of sets. In this new edition the author has added solutions to the exercises, and rearranged and reworked the text to improve the presentation.
Fuzzy hardware developments have been a major force driving the applications of fuzzy set theory and fuzzy logic in both science and engineering. This volume provides the reader with a comprehensive up-to-date look at recent works describing new innovative developments of fuzzy hardware. An important research trend is the design of improved fuzzy hardware. There is an increasing interest in both analog and digital implementations of fuzzy controllers in particular and fuzzy systems in general. Specialized analog and digital VLSI implementations of fuzzy systems, in the form of dedicated architectures, aim at the highest implementation efficiency. This particular efficiency is asserted in terms of processing speed and silicon utilization. Processing speed in particular has caught the attention of developers of fuzzy hardware and researchers in the field. The volume includes detailed material on a variety of fuzzy hardware related topics such as: Historical review of fuzzy hardware research Fuzzy hardware based on encoded trapezoids Pulse stream techniques for fuzzy hardware Hardware realization of fuzzy neural networks Design of analog neuro-fuzzy systems in CMOS digital technologies Fuzzy controller synthesis method Automatic design of digital and analog neuro-fuzzy controllers Electronic implementation of complex controllers Silicon compilation of fuzzy hardware systems Digital fuzzy hardware processing Parallel processor architecture for real-time fuzzy applications Fuzzy cellular systems Fuzzy Hardware: Architectures and Applications is a technical reference book for researchers, engineers and scientists interested in fuzzy systems in general and in building fuzzy systems in particular.
Lectori salutem! The kind reader opens the book that its authors would have liked to read it themselves, but it was not written yet. Then, their only choice was to write this book, to fill a gap in the mathematicalliterature. The idea of convexity has appeared in the human mind since the antiquity and its fertility has led to a huge diversity of notions and of applications. A student intending a thoroughgoing study of convexity has the sensation of swimming into an ocean. It is due to two reasons: the first one is the great number of properties and applications of the classical convexity and second one is the great number of generalisations for various purposes. As a consequence, a tendency of writing huge books guiding the reader in convexity appeared during the last twenty years (for example, the books of P. M. Gruber and J. M. Willis (1993) and R. J. Webster (1994)). Another last years' tendency is to order, from some point of view, as many convexity notions as possible (for example, the book of I. Singer (1997)). These approaches to the domain of convexity follow the previous point of view of axiomatizing it (A. Ghika (1955), W. Prenowitz (1961), D. Voiculescu (1967), V. W. Bryant and R. J. Webster (1969)). Following this last tendency, our book proposes to the reader two classifications of convexity properties for sets, both of them starting from the internal mechanism of defining them.
In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 1r. (4) Construct a regular polygon with n sides for n > 2. If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In chapter 4 we will show that (1) through (3) are not possible and we will determine necessary and sufficient conditions that the integer n must satisfy in order that a regular polygon with n sides be constructible.
After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms.
The concept of infinity is one of the most important, and at the same time, one of the most mysterious concepts of science. Already in antiquity many philosophers and mathematicians pondered over its contradictory nature. In mathematics, the contradictions connected with infinity intensified after the creation, at the end of the 19th century, of the theory of infinite sets and the subsequent discovery, soon after, of paradoxes in this theory. At the time, many scientists ignored the paradoxes and used set theory extensively in their work, while others subjected set-theoretic methods in mathematics to harsh criticism. The debate intensified when a group of French mathematicians, who wrote under the pseudonym of Nicolas Bourbaki, tried to erect the whole edifice of mathematics on the single notion of a set. Some mathematicians greeted this attempt enthusiastically while others regarded it as an unnecessary formalization, an attempt to tear mathematics away from life-giving practical applications that sustain it. These differences notwithstanding, Bourbaki has had a significant influence on the evolution of mathematics in the twentieth century. In this book we try to tell the reader how the idea of the infinite arose and developed in physics and in mathematics, how the theory of infinite sets was constructed, what paradoxes it has led to, what significant efforts have been made to eliminate the resulting contradictions, and what routes scientists are trying to find that would provide a way out of the many difficulties.
This book deals with two important branches of mathematics, namely, logic and set theory. Logic and set theory are closely related and play very crucial roles in the foundation of mathematics, and together produce several results in all of mathematics. The topics of logic and set theory are required in many areas of physical sciences, engineering, and technology. The book offers solved examples and exercises, and provides reasonable details to each topic discussed, for easy understanding. The book is designed for readers from various disciplines where mathematical logic and set theory play a crucial role. The book will be of interested to students and instructors in engineering, mathematics, computer science, and technology.
The capabilities of modern technology are rapidly increasing, spurred on to a large extent by the tremendous advances in communications and computing. Automated vehicles and global wireless connections are some examples of these advances. In order to take advantage of such enhanced capabilities, our need to model and manipulate our knowledge of the geophysical world, using compatible representations, is also rapidly increasing. In response to this one fundamental issue of great concern in modern geographical research is how to most effectively capture the physical world around us in systems like geographical information systems (GIS). Making this task even more challenging is the fact that uncertainty plays a pervasive role in the representation, analysis and use of geospatial information. The types of uncertainty that appear in geospatial information systems are not the just simple randomness of observation, as in weather data, but are manifested in many other forms including imprecision, incompleteness and granularization. Describing the uncertainty of the boundaries of deserts and mountains clearly require different tools than those provided by probability theory. The multiplicity of modalities of uncertainty appearing in GIS requires a variety of formalisms to model these uncertainties. In light of this it is natural that fuzzy set theory has become a topic of intensive interest in many areas of geographical research and applications This volume, Fuzzy Modeling with Spatial Information for Geographic Problems, provides many stimulating examples of advances in geographical research based on approaches using fuzzy sets and related technologies.
How to draw plausible conclusions from uncertain and conflicting sources of evidence is one of the major intellectual challenges of Artificial Intelligence. It is a prerequisite of the smart technology needed to help humans cope with the information explosion of the modern world. In addition, computational modelling of uncertain reasoning is a key to understanding human rationality. Previous computational accounts of uncertain reasoning have fallen into two camps: purely symbolic and numeric. This book represents a major advance by presenting a unifying framework which unites these opposing camps. The Incidence Calculus can be viewed as both a symbolic and a numeric mechanism. Numeric values are assigned indirectly to evidence via the possible worlds in which that evidence is true. This facilitates purely symbolic reasoning using the possible worlds and numeric reasoning via the probabilities of those possible worlds. Moreover, the indirect assignment solves some difficult technical problems, like the combinat ion of dependent sources of evidcence, which had defeated earlier mechanisms. Weiru Liu generalises the Incidence Calculus and then compares it to a succes sion of earlier computational mechanisms for uncertain reasoning: Dempster-Shafer Theory, Assumption-Based Truth Maintenance, Probabilis tic Logic, Rough Sets, etc. She shows how each of them is represented and interpreted in Incidence Calculus. The consequence is a unified mechanism which includes both symbolic and numeric mechanisms as special cases. It provides a bridge between symbolic and numeric approaches, retaining the advantages of both and overcoming some of their disadvantages."
This book provides an introduction to mathematical logic and the foundations of mathematics. It will help prepare students for advanced study in set theory and mathematical logic as well as other areas of mathematics, such as analysis, topology, and algebra. The presentation of finite state and Turing machines leads to the Halting Problem and Goedel's Incompleteness Theorem, which have broad academic interest, particularly in computer science and philosophy.
This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.
Problems in Set Theory, Mathematical Logic and the Theory of Algorithms by I. Lavrov & L. Maksimova is an English translation of the fourth edition of the most popular student problem book in mathematical logic in Russian. It covers major classical topics in proof theory and the semantics of propositional and predicate logic as well as set theory and computation theory. Each chapter begins with 1-2 pages of terminology and definitions that make the book self-contained. Solutions are provided. The book is likely to become an essential part of curricula in logic. |
![]() ![]() You may like...
Theory and Applications of…
Florentin Smarandache, Madeline Al-Tahan
Hardcover
R7,211
Discovery Miles 72 110
Top-Down Causation and Emergence
Jan Voosholz, Markus Gabriel
Hardcover
R3,916
Discovery Miles 39 160
Symbolic Logic and Mechanical Theorem…
Chin-Liang Chang, Richard Char-Tung Lee
Hardcover
R1,516
Discovery Miles 15 160
Principles of Integrated Airborne…
Igor Victorovich Avtin, Vladimir Ivanovich Baburov, …
Hardcover
R5,153
Discovery Miles 51 530
Proceedings of International Symposium…
Nageswara S.V. Rao, Richard R. Brooks, …
Hardcover
R5,126
Discovery Miles 51 260
|