![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Set theory
Continues to focuses specifically on probability rather than probability and statistics Offers a conversational presentation rather than theorem/proof and includes examples based on engineering applications as it highlights Excel computations Presents a review of set theory and updates all descriptions so they are more understandable such as events versus outcomes Additional new material includes distributions such as beta and lognormal, a section on counting principles for defining probabilities, a section on mixture distributions, and a pair of distribution summary tables A solutions manual is available for qualified textbook adoptions
In fall 2000, the Notre Dame logic community hosted Greg Hjorth, Rodney G. Downey, ZoA(c) Chatzidakis, and Paola D'Aquino as visiting lecturers. Each of them presented a month long series of expository lectures at the graduate level. The articles in this volume are refinements of these excellent lectures.
Studies in Logic and the Foundations of Mathematics, Volume 102: Set Theory: An Introduction to Independence Proofs offers an introduction to relative consistency proofs in axiomatic set theory, including combinatorics, sets, trees, and forcing. The book first tackles the foundations of set theory and infinitary combinatorics. Discussions focus on the Suslin problem, Martin's axiom, almost disjoint and quasi-disjoint sets, trees, extensionality and comprehension, relations, functions, and well-ordering, ordinals, cardinals, and real numbers. The manuscript then ponders on well-founded sets and easy consistency proofs, including relativization, absoluteness, reflection theorems, properties of well-founded sets, and induction and recursion on well-founded relations. The publication examines constructible sets, forcing, and iterated forcing. Topics include Easton forcing, general iterated forcing, Cohen model, forcing with partial functions of larger cardinality, forcing with finite partial functions, and general extensions. The manuscript is a dependable source of information for mathematicians and researchers interested in set theory.
This book proves some important new theorems in the theory of canonical inner models for large cardinal hypotheses, a topic of central importance in modern set theory. In particular, the author 'completes' the theory of Fine Structure and Iteration Trees (FSIT) by proving a comparison theorem for mouse pairs parallel to the FSIT comparison theorem for pure extender mice, and then using the underlying comparison process to develop a fine structure theory for strategy mice. Great effort has been taken to make the book accessible to non-experts so that it may also serve as an introduction to the higher reaches of inner model theory. It contains a good deal of background material, some of it unpublished folklore, and includes many references to the literature to guide further reading. An introductory essay serves to place the new results in their broader context. This is a landmark work in inner model theory that should be in every set theorist's library.
This innovative book introduces finite and transfinite interpolation methods at a general level in a unifying mathematical style before covering dynamical interpolation methods, which emphasize the underlying Eulerian/Lagrangian dynamics. Transfinite Interpolations and Eulerian/Lagrangian Dynamics: Considers the support of the data set as a geometrically structured set as opposed to an unstructured cloud of points. Is a self-contained graduate-level text, integrating theory, applications, numerical approximations, and computational techniques. Tackles transfinite interpolation methods applied to finite element meshes adaptation and ALE fluid-structure interaction and to the construction of velocity fields from the boundary expression of shape derivatives. Specialists in applied mathematics, physics, mechanics, computational sciences, imaging sciences, and engineering will find this book of interest.
Presents a novel approach to set theory that is entirely operational. This approach avoids the existential axioms associated with traditional Zermelo-Fraenkel set theory, and provides both a foundation for set theory and a practical approach to learning the subject.
The major focus of this book is measurement and categorization in set theory, most notably on results dealing with asymmetry. The authors delve into the study of a deep symmetry between the concept of Lebesque measurability and the Baire property, and obtain findings on the structure of the real line.
This book is about "diamond," a logic of paradox. In diamond, a statement can be true yet false; an "imaginary" state, midway between being and non-being. Diamond's imaginary values solve many logical paradoxes unsolvable in two-valued boolean logic. In this volume, paradoxes by Russell, Cantor, Berry and Zeno are all resolved. This book has three sections: Paradox Logic, which covers the classic paradoxes of mathematical logic, shows how they can be resolved in this new system; The Second Paradox, which relates diamond to Boolean logic and the Spencer-Brown "modulator"; and Metamathematical Dilemma, which relates diamond to Gdelian meta-mathematics and dilemma games.
Formal Methods in Computer Science gives students a comprehensive introduction to formal methods and their application in software and hardware specification and verification. The first part introduces some fundamentals in formal methods, including set theory, functions, finite state machines, and regular expressions. The second part focuses on logic, a powerful formal language in specifying systems properties. It covers propositional logic, predicate logic, temporal logic, and model checking. The third part presents Petri nets, the most popular formal language in system behavior modeling. In additional to regular Petri nets, this part also examines timed Petri nets and high-level Petri nets. The textbook is ideal for undergraduate or graduate courses in computer engineering, software engineering, computer science, and information technology programs. Parts of the book are useful reading material in undergraduate computer course and as a reference guide for students researching the area of formal system specification and validation. Features * Introduces a comprehensive, yet manageable set of formal techniques for computer science students * Stresses real-world application value of each formal technique * Offers a good set of exercises which help students better understand the presented techniques * Also offers a prepared source code for downloading and non-commercial use
This volume contains the proceedings of Simon Fest, held in honor of Simon Thomas's 60th birthday, from September 15-17, 2017, at Rutgers University, Piscataway, New Jersey. The topics covered showcase recent advances from a variety of main areas of set theory, including descriptive set theory, forcing, and inner model theory, in addition to several applications of set theory, including ergodic theory, combinatorics, and model theory.
In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.
Starting with the most basic notions, Universal Algebra: Fundamentals and Selected Topics introduces all the key elements needed to read and understand current research in this field. Based on the author's two-semester course, the text prepares students for research work by providing a solid grounding in the fundamental constructions and concepts of universal algebra and by introducing a variety of recent research topics. The first part of the book focuses on core components, including subalgebras, congruences, lattices, direct and subdirect products, isomorphism theorems, a clone of operations, terms, free algebras, Birkhoff's theorem, and standard Maltsev conditions. The second part covers topics that demonstrate the power and breadth of the subject. The author discusses the consequences of Jonsson's lemma, finitely and nonfinitely based algebras, definable principal congruences, and the work of Foster and Pixley on primal and quasiprimal algebras. He also includes a proof of Murski 's theorem on primal algebras and presents McKenzie's characterization of directly representable varieties, which clearly shows the power of the universal algebraic toolbox. The last chapter covers the rudiments of tame congruence theory. Throughout the text, a series of examples illustrates concepts as they are introduced and helps students understand how universal algebra sheds light on topics they have already studied, such as Abelian groups and commutative rings. Suitable for newcomers to the field, the book also includes carefully selected exercises that reinforce the concepts and push students to a deeper understanding of the theorems and techniques.
The Art of Proving Binomial Identities accomplishes two goals: (1) It provides a unified treatment of the binomial coefficients, and (2) Brings together much of the undergraduate mathematics curriculum via one theme (the binomial coefficients). The binomial coefficients arise in a variety of areas of mathematics: combinatorics, of course, but also basic algebra (binomial theorem), infinite series (Newton's binomial series), differentiation (Leibniz's generalized product rule), special functions (the beta and gamma functions), probability, statistics, number theory, finite difference calculus, algorithm analysis, and even statistical mechanics. The book is very suitable for advanced undergraduates or beginning graduate students and includes various exercises asking them to prove identities. Students will find that the text and notes at the end of the chapters encourages them to look at binomial coefficients from different angles. With this learning experience, students will be able to understand binomial coefficients in a new way. Features: Provides a unified treatment of many of the techniques for proving binomial coefficient identities. Ties together several of the courses in the undergraduate mathematics curriculum via a single theme. A textbook for a capstone or senior seminar course in mathematics. Contains several results by the author on proof techniques for binomial coefficients that are not well-known. Ideal for self-study, it contains a large number of exercises at the end of each chapter, with hints or solutions for every exercise at the end of the book.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the fifth publication in the Perspectives in Logic series, studies set-theoretic independence results (independence from the usual set-theoretic ZFC axioms), in particular for problems on the continuum. The author gives a complete presentation of the theory of proper forcing and its relatives, starting from the beginning and avoiding the metamathematical considerations. No prior knowledge of forcing is required. The book will enable a researcher interested in an independence result of the appropriate kind to have much of the work done for them, thereby allowing them to quote general results.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Lecture Notes in Logic series, is the proceedings of the Association for Symbolic Logic meeting held in Helsinki, Finland, in July 1990. It contains eighteen papers by leading researchers, covering all fields of mathematical logic from the philosophy of mathematics, through model theory, proof theory, recursion theory, and set theory, to the connections of logic to computer science. The articles published here are still widely cited and continue to provide ideas for ongoing research projects.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
..."The book, written by one of the main researchers on the field, gives a complete account of the theory of r.e. degrees. .... The definitions, results and proofs are always clearly motivated and explained before the formal presentation; the proofs are described with remarkable clarity and conciseness. The book is highly recommended to everyone interested in logic. It also provides a useful background to computer scientists, in particular to theoretical computer scientists." Acta Scientiarum Mathematicarum, Ungarn 1988 ..."The main purpose of this book is to introduce the reader to the main results and to the intricacies of the current theory for the recurseively enumerable sets and degrees. The author has managed to give a coherent exposition of a rather complex and messy area of logic, and with this book degree-theory is far more accessible to students and logicians in other fields than it used to be." Zentralblatt fur Mathematik, 623.1988
This collection of articles, originating from a short course held at the University of Manchester, explores the ideas behind Pila's proof of the Andre-Oort conjecture for products of modular curves. The basic strategy has three main ingredients: the Pila-Wilkie theorem, bounds on Galois orbits, and functional transcendence results. All of these topics are covered in this volume, making it ideal for researchers wishing to keep up to date with the latest developments in the field. Original papers are combined with background articles in both the number theoretic and model theoretic aspects of the subject. These include Martin Orr's survey of abelian varieties, Christopher Daw's introduction to Shimura varieties, and Jacob Tsimerman's proof via o-minimality of Ax's theorem on the functional case of Schanuel's conjecture.
Is the continuum hypothesis still open? If we interpret it as finding the laws of cardinal arithmetic (really exponentiation since addition and multiplication were classically solved), it was thought to be essentially solved by the independence results of Goedel and Cohen (and Easton) with some isolated positive results (like Galvin-Hajnal). It was expected that only more independence results remained to be proved. The author has come to change his view: we should stress ]*N0 (not 2] ) and mainly look at the cofinalities rather than cardinalities, in particular pp (), pcf ( ). Their properties are investigated here and conventional cardinal arithmetic is reduced to 2]*N (*N - regular, cases totally independent) and various cofinalities. This enables us to get new results for the conventional cardinal arithmetic, thus supporting the interest in our view. We also find other applications, extend older methods of using normal fiters and prove the existence of Jonsson algebra.
In Parts of Classes, David Lewis outlined a reduction of ZFC to a second order mereology. His conclusion takes on the following form in this reconstruction: ZFC is susceptible to parameterized interpretation in M (classical second order mereology) plus, there is a strongly unreachable partition. The proof makes use of the fact that ordered pairs in M plus an infinite partition are susceptible to parameterized interpretation."
This book is an introduction to modern cardinal arithmetic, developed in the frame of the axioms of Zermelo-Fraenkel set theory together with the axiom of choice. It splits into three parts. Part one, which is contained in Chapter 1, describes the classical cardinal arithmetic due to Bernstein, Cantor, Hausdorff, Konig, and Tarski. The results were found in the years between 1870 and 1930. Part two, which is Chapter 2, characterizes the development of cardinal arith metic in the seventies, which was led by Galvin, Hajnal, and Silver. The third part, contained in Chapters 3 to 9, presents the fundamental investigations in pcf-theory which has been developed by S. Shelah to answer the questions left open in the seventies. All theorems presented in Chapter 3 and Chapters 5 to 9 are due to Shelah, unless otherwise stated. We are greatly indebted to all those set theorists whose work we have tried to expound. Concerning the literature we owe very much to S. Shelah's book [Sh5] and to the article by M. R. Burke and M. Magidor [BM] which also initiated our students' interest for Shelah's pcf-theory.
This two-volume work bridges the gap between introductory expositions of logic or set theory on one hand, and the research literature on the other. It can be used as a text in an advanced undergraduate or beginning graduate course in mathematics, computer science, or philosophy. The volumes are written in a user-friendly conversational lecture style that makes them equally effective for self-study or class use. Volume 1 includes formal proof techniques, a section on applications of compactness (including nonstandard analysis), a generous dose of computability and its relation to the incompleteness phenomenon, and the first presentation of a complete proof of Godel's 2nd incompleteness since Hilbert and Bernay's Grundlagen theorem.
Handbook of Mathematical Induction: Theory and Applications shows how to find and write proofs via mathematical induction. This comprehensive book covers the theory, the structure of the written proof, all standard exercises, and hundreds of application examples from nearly every area of mathematics. In the first part of the book, the author discusses different inductive techniques, including well-ordered sets, basic mathematical induction, strong induction, double induction, infinite descent, downward induction, and several variants. He then introduces ordinals and cardinals, transfinite induction, the axiom of choice, Zorn s lemma, empirical induction, and fallacies and induction. He also explains how to write inductive proofs. The next part contains more than 750 exercises that highlight the levels of difficulty of an inductive proof, the variety of inductive techniques available, and the scope of results provable by mathematical induction. Each self-contained chapter in this section includes the necessary definitions, theory, and notation and covers a range of theorems and problems, from fundamental to very specialized. The final part presents either solutions or hints to the exercises. Slightly longer than what is found in most texts, these solutions provide complete details for every step of the problem-solving process.
This exploration of a notorious mathematical problem is the work of
the man who discovered the solution. The independence of the
continuum hypothesis is the focus of this study by Paul J. Cohen.
It presents not only an accessible technical explanation of the
author's landmark proof but also a fine introduction to
mathematical logic. An emeritus professor of mathematics at
Stanford University, Dr. Cohen won two of the most prestigious
awards in mathematics: in 1964, he was awarded the American
Mathematical Society's Bocher Prize for analysis; and in 1966, he
received the Fields Medal for Logic. |
![]() ![]() You may like...
Applications of Point Set Theory in Real…
A.B. Kharazishvili
Hardcover
R3,016
Discovery Miles 30 160
Non-Classical Logics and Their…
Ulrich Hohle, Erich Peter Klement
Hardcover
R2,618
Discovery Miles 26 180
|