![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > Set theory
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler's formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler's phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
Bridging the gap between procedural mathematics that emphasizes calculations and conceptual mathematics that focuses on ideas, Mathematics: A Minimal Introduction presents an undergraduate-level introduction to pure mathematics and basic concepts of logic. The author builds logic and mathematics from scratch using essentially no background except natural language. He also carefully avoids circularities that are often encountered in related books and places special emphasis on separating the language of mathematics from metalanguage and eliminating semantics from set theory. The first part of the text focuses on pre-mathematical logic, including syntax, semantics, and inference. The author develops these topics entirely outside the mathematical paradigm. In the second part, the discussion of mathematics starts with axiomatic set theory and ends with advanced topics, such as the geometry of cubics, real and p-adic analysis, and the quadratic reciprocity law. The final part covers mathematical logic and offers a brief introduction to model theory and incompleteness. Taking a formalist approach to the subject, this text shows students how to reconstruct mathematics from language itself. It helps them understand the mathematical discourse needed to advance in the field.
Transition to Real Analysis with Proof provides undergraduate students with an introduction to analysis including an introduction to proof. The text combines the topics covered in a transition course to lead into a first course on analysis. This combined approach allows instructors to teach a single course where two were offered. The text opens with an introduction to basic logic and set theory, setting students up to succeed in the study of analysis. Each section is followed by graduated exercises that both guide and challenge students. The author includes examples and illustrations that appeal to the visual side of analysis. The accessible structure of the book makes it an ideal refence for later years of study or professional work. Combines the author's previous works Elements of Advanced Mathematics with Foundations of Analysis Combines logic, set theory and other elements with a one-semester introduction to analysis. Author is a well-known mathematics educator and researcher Targets a trend to combine two courses into one
This volume contains the proceedings of the conference Logical Foundations of Mathematics, Computer Science, and Physics-Kurt Godel's Legacy, held in Brno, Czech Republic on the 90th anniversary of his birth. The wide and continuing importance of Godel s work in the logical foundations of mathematics, computer science, and physics is confirmed by the broad range of speakers who participated in making this gathering a scientific event.
"Among the many expositions of Goedel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzen gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Goedel
Fuzzy knowledge and fuzzy systems affect our lives today as systems enter the world of commerce. Fuzzy systems are incorporated in domestic appliances (washing machine, air conditioning, microwave, telephone) and in transport systems (a pilotless helicopter has recently completed a test flight). Future applications are expected to have dramatic implications for the demand for labor, among other things. It was with such thoughts in mind that this first international survey of future applications of fuzzy logic has been undertaken. The results are likely to be predictive for a decade beyond the millenium. The predictive element is combined with a bibliography which serves as an historical anchor as well as being both extensive and extremely useful. Analysis and Evaluation of Fuzzy Systems is thus a milestone in the development of fuzzy logic and applications of three representative subsystems: Fuzzy Control, Fuzzy Pattern Recognition and Fuzzy Communications.
Set Theory has experienced a rapid development in recent years, with major advances in forcing, inner models, large cardinals and descriptive set theory. The present book covers each of these areas, giving the reader an understanding of the ideas involved. It can be used for introductory students and is broad and deep enough to bring the reader near the boundaries of current research. Students and researchers in the field will find the book invaluable both as a study material and as a desktop reference.
Presents Results from a Very Active Area of Research Exploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathematics, such as algebra, topology, and logic, which have diverse applications to other fields. After reviewing classical and effective descriptive set theory, the text studies Polish groups and their actions. It then covers Borel reducibility results on Borel, orbit, and general definable equivalence relations. The author also provides proofs for numerous fundamental results, such as the Glimm-Effros dichotomy, the Burgess trichotomy theorem, and the Hjorth turbulence theorem. The next part describes connections with the countable model theory of infinitary logic, along with Scott analysis and the isomorphism relation on natural classes of countable models, such as graphs, trees, and groups. The book concludes with applications to classification problems and many benchmark equivalence relations. By illustrating the relevance of invariant descriptive set theory to other fields of mathematics, this self-contained book encourages readers to further explore this very active area of research.
Studies in Logic and the Foundations of Mathematics, Volume 102: Set Theory: An Introduction to Independence Proofs offers an introduction to relative consistency proofs in axiomatic set theory, including combinatorics, sets, trees, and forcing. The book first tackles the foundations of set theory and infinitary combinatorics. Discussions focus on the Suslin problem, Martin's axiom, almost disjoint and quasi-disjoint sets, trees, extensionality and comprehension, relations, functions, and well-ordering, ordinals, cardinals, and real numbers. The manuscript then ponders on well-founded sets and easy consistency proofs, including relativization, absoluteness, reflection theorems, properties of well-founded sets, and induction and recursion on well-founded relations. The publication examines constructible sets, forcing, and iterated forcing. Topics include Easton forcing, general iterated forcing, Cohen model, forcing with partial functions of larger cardinality, forcing with finite partial functions, and general extensions. The manuscript is a dependable source of information for mathematicians and researchers interested in set theory.
In fall 2000, the Notre Dame logic community hosted Greg Hjorth, Rodney G. Downey, ZoA(c) Chatzidakis, and Paola D'Aquino as visiting lecturers. Each of them presented a month long series of expository lectures at the graduate level. The articles in this volume are refinements of these excellent lectures.
This innovative book introduces finite and transfinite interpolation methods at a general level in a unifying mathematical style before covering dynamical interpolation methods, which emphasize the underlying Eulerian/Lagrangian dynamics. Transfinite Interpolations and Eulerian/Lagrangian Dynamics: Considers the support of the data set as a geometrically structured set as opposed to an unstructured cloud of points. Is a self-contained graduate-level text, integrating theory, applications, numerical approximations, and computational techniques. Tackles transfinite interpolation methods applied to finite element meshes adaptation and ALE fluid-structure interaction and to the construction of velocity fields from the boundary expression of shape derivatives. Specialists in applied mathematics, physics, mechanics, computational sciences, imaging sciences, and engineering will find this book of interest.
Presents a novel approach to set theory that is entirely operational. This approach avoids the existential axioms associated with traditional Zermelo-Fraenkel set theory, and provides both a foundation for set theory and a practical approach to learning the subject.
The major focus of this book is measurement and categorization in set theory, most notably on results dealing with asymmetry. The authors delve into the study of a deep symmetry between the concept of Lebesque measurability and the Baire property, and obtain findings on the structure of the real line.
Formal Methods in Computer Science gives students a comprehensive introduction to formal methods and their application in software and hardware specification and verification. The first part introduces some fundamentals in formal methods, including set theory, functions, finite state machines, and regular expressions. The second part focuses on logic, a powerful formal language in specifying systems properties. It covers propositional logic, predicate logic, temporal logic, and model checking. The third part presents Petri nets, the most popular formal language in system behavior modeling. In additional to regular Petri nets, this part also examines timed Petri nets and high-level Petri nets. The textbook is ideal for undergraduate or graduate courses in computer engineering, software engineering, computer science, and information technology programs. Parts of the book are useful reading material in undergraduate computer course and as a reference guide for students researching the area of formal system specification and validation. Features * Introduces a comprehensive, yet manageable set of formal techniques for computer science students * Stresses real-world application value of each formal technique * Offers a good set of exercises which help students better understand the presented techniques * Also offers a prepared source code for downloading and non-commercial use
Starting with the most basic notions, Universal Algebra: Fundamentals and Selected Topics introduces all the key elements needed to read and understand current research in this field. Based on the author's two-semester course, the text prepares students for research work by providing a solid grounding in the fundamental constructions and concepts of universal algebra and by introducing a variety of recent research topics. The first part of the book focuses on core components, including subalgebras, congruences, lattices, direct and subdirect products, isomorphism theorems, a clone of operations, terms, free algebras, Birkhoff's theorem, and standard Maltsev conditions. The second part covers topics that demonstrate the power and breadth of the subject. The author discusses the consequences of Jonsson's lemma, finitely and nonfinitely based algebras, definable principal congruences, and the work of Foster and Pixley on primal and quasiprimal algebras. He also includes a proof of Murski 's theorem on primal algebras and presents McKenzie's characterization of directly representable varieties, which clearly shows the power of the universal algebraic toolbox. The last chapter covers the rudiments of tame congruence theory. Throughout the text, a series of examples illustrates concepts as they are introduced and helps students understand how universal algebra sheds light on topics they have already studied, such as Abelian groups and commutative rings. Suitable for newcomers to the field, the book also includes carefully selected exercises that reinforce the concepts and push students to a deeper understanding of the theorems and techniques.
Writing with clear knowledge and affection for the subject, the author introduces and explores infinite sets, infinite cardinals, and ordinals, thus challenging the readers' intuitive beliefs about infinity. Requiring little mathematical training and a healthy curiosity, the book presents a user-friendly approach to ideas involving the infinite. Readers will discover the main ideas of infinite cardinals and ordinal numbers without experiencing in-depth mathematical rigor. Classic arguments and illustrative examples are provided throughout the book and are accompanied by a gradual progression of sophisticated notions designed to stun your intuitive view of the world. Infinity, we are told, is as large as things get. This is not entirely true. This book does not refer to "infinities, " but rather to "cardinals." This is to emphasize the point that what you thought you knew about infinity is probably incorrect or imprecise. Since the reader is assumed to be educated in mathematics, but not necessarily mathematically trained, an attempt has been made to convince the reader of the truth of a matter without resorting to the type of rigor found in professional journals. Therefore, the author has accompanied the proofs with illustrative examples. The examples are often a part of a larger proof. Important facts are included and their proofs have been excluded if the author has determined that the proof is beyond the scope of the discussion. For example, it is assumed and not proven within the book that a collection of cardinals is larger than any set or mathematical object. The topics covered within the book cannot be found within any other one book on infinity, and the work succeeds in being the only book on infinite cardinals for the high school educated person. Topical coverage includes: logic and sets; functions; counting infinite sets; infinite cardinals; well ordered sets; inductions and numbers; prime numbers; and logic and meta-mathematics.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Lecture Notes in Logic series, is the proceedings of the Association for Symbolic Logic meeting held in Helsinki, Finland, in July 1990. It contains eighteen papers by leading researchers, covering all fields of mathematical logic from the philosophy of mathematics, through model theory, proof theory, recursion theory, and set theory, to the connections of logic to computer science. The articles published here are still widely cited and continue to provide ideas for ongoing research projects.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the fifth publication in the Perspectives in Logic series, studies set-theoretic independence results (independence from the usual set-theoretic ZFC axioms), in particular for problems on the continuum. The author gives a complete presentation of the theory of proper forcing and its relatives, starting from the beginning and avoiding the metamathematical considerations. No prior knowledge of forcing is required. The book will enable a researcher interested in an independence result of the appropriate kind to have much of the work done for them, thereby allowing them to quote general results.
Thoroughly revised, updated, expanded, and reorganized to serve as a primary text for mathematics courses, Introduction to Set Theory, Third Edition covers the basics: relations, functions, orderings, finite, countable, and uncountable sets, and cardinal and ordinal numbers. It also provides five additional self-contained chapters, consolidates the material on real numbers into a single updated chapter affording flexibility in course design, supplies end-of-section problems, with hints, of varying degrees of difficulty, includes new material on normal forms and Goodstein sequences, and adds important recent ideas including filters, ultrafilters, closed unbounded and stationary sets, and partitions.
..."The book, written by one of the main researchers on the field, gives a complete account of the theory of r.e. degrees. .... The definitions, results and proofs are always clearly motivated and explained before the formal presentation; the proofs are described with remarkable clarity and conciseness. The book is highly recommended to everyone interested in logic. It also provides a useful background to computer scientists, in particular to theoretical computer scientists." Acta Scientiarum Mathematicarum, Ungarn 1988 ..."The main purpose of this book is to introduce the reader to the main results and to the intricacies of the current theory for the recurseively enumerable sets and degrees. The author has managed to give a coherent exposition of a rather complex and messy area of logic, and with this book degree-theory is far more accessible to students and logicians in other fields than it used to be." Zentralblatt fur Mathematik, 623.1988
This collection of articles, originating from a short course held at the University of Manchester, explores the ideas behind Pila's proof of the Andre-Oort conjecture for products of modular curves. The basic strategy has three main ingredients: the Pila-Wilkie theorem, bounds on Galois orbits, and functional transcendence results. All of these topics are covered in this volume, making it ideal for researchers wishing to keep up to date with the latest developments in the field. Original papers are combined with background articles in both the number theoretic and model theoretic aspects of the subject. These include Martin Orr's survey of abelian varieties, Christopher Daw's introduction to Shimura varieties, and Jacob Tsimerman's proof via o-minimality of Ax's theorem on the functional case of Schanuel's conjecture.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
The starting point of this book is Sperner's theorem, which answers the question: What is the maximum possible size of a family of pairwise (with respect to inclusion) subsets of a finite set? This theorem stimulated the development of a fast growing theory dealing with external problems on finite sets and, more generally, on finite partially ordered sets. This book presents Sperner theory from a unified point of view, bringing combinatorial techniques together with methods from programming, linear algebra, Lie-algebra representations and eigenvalue methods, probability theory, and enumerative combinatorics. Researchers and graduate students in discrete mathematics, optimisation, algebra, probability theory, number theory, and geometry will find many powerful new methods arising from Sperner theory.
This volume contains the proceedings of Simon Fest, held in honor of Simon Thomas's 60th birthday, from September 15-17, 2017, at Rutgers University, Piscataway, New Jersey. The topics covered showcase recent advances from a variety of main areas of set theory, including descriptive set theory, forcing, and inner model theory, in addition to several applications of set theory, including ergodic theory, combinatorics, and model theory. |
You may like...
Wireless Communication Networks…
Hailong Huang, Andrey V. Savkin, …
Paperback
R2,763
Discovery Miles 27 630
Advances in Imaging and Electron…
Martin Hytch, Peter W. Hawkes
Hardcover
R5,929
Discovery Miles 59 290
Intelligent Multimedia Data Analysis
Siddhartha Bhattacharyya, Indrajit Pan, …
Hardcover
R3,633
Discovery Miles 36 330
Quantitative Atomic-Resolution Electron…
Martin Hytch, Peter W. Hawkes
Hardcover
R5,235
Discovery Miles 52 350
Advances in Imaging and Electron…
Peter W. Hawkes, Martin Hytch
Hardcover
R5,218
Discovery Miles 52 180
Computing and Visualization for…
Simone Balocco, Maria A Zuluaga, …
Hardcover
Intelligent Edge Computing for Cyber…
D. Jude Hemanth, Bb Gupta, …
Paperback
R2,954
Discovery Miles 29 540
|