![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Set theory
Is the continuum hypothesis still open? If we interpret it as finding the laws of cardinal arithmetic (really exponentiation since addition and multiplication were classically solved), it was thought to be essentially solved by the independence results of Goedel and Cohen (and Easton) with some isolated positive results (like Galvin-Hajnal). It was expected that only more independence results remained to be proved. The author has come to change his view: we should stress ]*N0 (not 2] ) and mainly look at the cofinalities rather than cardinalities, in particular pp (), pcf ( ). Their properties are investigated here and conventional cardinal arithmetic is reduced to 2]*N (*N - regular, cases totally independent) and various cofinalities. This enables us to get new results for the conventional cardinal arithmetic, thus supporting the interest in our view. We also find other applications, extend older methods of using normal fiters and prove the existence of Jonsson algebra.
In Parts of Classes, David Lewis outlined a reduction of ZFC to a second order mereology. His conclusion takes on the following form in this reconstruction: ZFC is susceptible to parameterized interpretation in M (classical second order mereology) plus, there is a strongly unreachable partition. The proof makes use of the fact that ordered pairs in M plus an infinite partition are susceptible to parameterized interpretation."
The starting point of this book is Sperner's theorem, which answers the question: What is the maximum possible size of a family of pairwise (with respect to inclusion) subsets of a finite set? This theorem stimulated the development of a fast growing theory dealing with external problems on finite sets and, more generally, on finite partially ordered sets. This book presents Sperner theory from a unified point of view, bringing combinatorial techniques together with methods from programming, linear algebra, Lie-algebra representations and eigenvalue methods, probability theory, and enumerative combinatorics. Researchers and graduate students in discrete mathematics, optimisation, algebra, probability theory, number theory, and geometry will find many powerful new methods arising from Sperner theory.
Handbook of Mathematical Induction: Theory and Applications shows how to find and write proofs via mathematical induction. This comprehensive book covers the theory, the structure of the written proof, all standard exercises, and hundreds of application examples from nearly every area of mathematics. In the first part of the book, the author discusses different inductive techniques, including well-ordered sets, basic mathematical induction, strong induction, double induction, infinite descent, downward induction, and several variants. He then introduces ordinals and cardinals, transfinite induction, the axiom of choice, Zorn s lemma, empirical induction, and fallacies and induction. He also explains how to write inductive proofs. The next part contains more than 750 exercises that highlight the levels of difficulty of an inductive proof, the variety of inductive techniques available, and the scope of results provable by mathematical induction. Each self-contained chapter in this section includes the necessary definitions, theory, and notation and covers a range of theorems and problems, from fundamental to very specialized. The final part presents either solutions or hints to the exercises. Slightly longer than what is found in most texts, these solutions provide complete details for every step of the problem-solving process.
This book is an introduction to modern cardinal arithmetic, developed in the frame of the axioms of Zermelo-Fraenkel set theory together with the axiom of choice. It splits into three parts. Part one, which is contained in Chapter 1, describes the classical cardinal arithmetic due to Bernstein, Cantor, Hausdorff, Konig, and Tarski. The results were found in the years between 1870 and 1930. Part two, which is Chapter 2, characterizes the development of cardinal arith metic in the seventies, which was led by Galvin, Hajnal, and Silver. The third part, contained in Chapters 3 to 9, presents the fundamental investigations in pcf-theory which has been developed by S. Shelah to answer the questions left open in the seventies. All theorems presented in Chapter 3 and Chapters 5 to 9 are due to Shelah, unless otherwise stated. We are greatly indebted to all those set theorists whose work we have tried to expound. Concerning the literature we owe very much to S. Shelah's book [Sh5] and to the article by M. R. Burke and M. Magidor [BM] which also initiated our students' interest for Shelah's pcf-theory.
The proceedings of the Los Angeles Caltech-UCLA 'Cabal Seminar' were originally published in the 1970s and 1980s. Wadge Degrees and Projective Ordinals is the second of a series of four books collecting the seminal papers from the original volumes together with extensive unpublished material, new papers on related topics and discussion of research developments since the publication of the original volumes. Focusing on the subjects of 'Wadge Degrees and Pointclasses' (Part III) and 'Projective Ordinals' (Part IV), each of the two sections is preceded by an introductory survey putting the papers into present context. These four volumes will be a necessary part of the book collection of every set theorist.
This exploration of a notorious mathematical problem is the work of
the man who discovered the solution. The independence of the
continuum hypothesis is the focus of this study by Paul J. Cohen.
It presents not only an accessible technical explanation of the
author's landmark proof but also a fine introduction to
mathematical logic. An emeritus professor of mathematics at
Stanford University, Dr. Cohen won two of the most prestigious
awards in mathematics: in 1964, he was awarded the American
Mathematical Society's Bocher Prize for analysis; and in 1966, he
received the Fields Medal for Logic.
Labyrinth of Thought discusses the emergence and development of set theory and the set-theoretic approach to mathematics during the period 1850-1940. Rather than focusing on the pivotal figure of Georg Cantor, it analyzes his work and the emergence of transfinite set theory within the broader context of the rise of modern mathematics. The text has a tripartite structure. Part 1, The Emergence of Sets within Mathematics, surveys the initial motivations for a mathematical notion of a set within several branches of the discipline (geometry, algebra, algebraic number theory, real and complex analysis), emphasizing the role played by Riemann in fostering acceptance of the set-theoretic approach. In Part 2, Entering the Labyrinth, attention turns to the earliest theories of sets, their evolution, and their reception by the mathematical community; prominent are the epoch-making contributions of Cantor and Dedekind, and the complex interactions between them. Part 3, In Search of an Axiom System, studies the four-decade period from the discovery of set-theoretic paradoxes to Godel s independence results, an era during which set theory gradually became assimilated into mainstream mathematics; particular attention is given to the interactions between axiomatic set theory and modern systems of formal logic, especially the interplay between set theory and type theory. A new Epilogue for this second edition offers further reflections on the foundations of set theory, including the "dichotomy conception" and the well-known iterative conception."
The proceedings of the Los Angeles Caltech-UCLA 'Cabal Seminar' were originally published in the 1970s and 1980s. Large Cardinals, Determinacy and Other Topics is the final volume in a series of four books collecting the seminal papers from the original volumes together with extensive unpublished material, new papers on related topics and discussion of research developments since the publication of the original volumes. This final volume contains Parts VII and VIII of the series. Part VII focuses on 'Extensions of AD, models with choice', while Part VIII ('Other topics') collects material important to the Cabal that does not fit neatly into one of its main themes. These four volumes will be a necessary part of the book collection of every set theorist.
A survey of the philosophical implications and practical applications of fuzzy systems Fuzzy mathematical concepts such as fuzzy sets, fuzzy logic, and similarity relations represent one of the most exciting currents in modern engineering and have great potential in applications ranging from control theory to bioinformatics. Data Engineering guides the reader through a number of concepts interconnected by fuzzy mathematics and discusses these concepts from a systems engineering perspective to showcase the continuing vitality, attractiveness, and applicability of fuzzy mathematics. The author discusses the fundamental aspects of data analysis, systems modeling, and uncertainty calculi. He avoids a narrow discussion of specialized methodologies and takes a holistic view of the nature and application of fuzzy systems, considering principles, paradigms, and methodologies along the way. This broad coverage includes:
In the important emerging field of bioinformatics, the book sets out how to encode a natural system in mathematical models, describes methods to identify interrelationships and interactions from data, and thereby helps the practitioner to decide which variables to measure and why. Data Engineering serves as an up-to-date and informative survey of the theoretical and practical tools for analyzing complex systems. It offers a unique treatment of complex issues that is accessible to students and researchers from a variety of backgrounds.
This book is an introduction to set theory for beginning graduate students who want to get a sound grounding in those aspects of set theory used extensively throughout other areas of mathematics. Topics covered include formal languages and models, the power and limitation of the Axiomatic Method, the Axiom of Choice, including the fascinating Banach-Tarski Paradox, applications of Zorn's Lemma, ordinal arithmetic, including transfinite induction, and cardinal arithmetic. The style of writing, more a dialogue with the reader than that of the Master indoctrinating the pupil, makes this also very suitable for self-study.
The axiomatic theory of sets is a vibrant part of pure mathematics, with its own basic notions, fundamental results, and deep open problems. It is also viewed as a foundation of mathematics so that "to make a notion precise" simply means "to define it in set theory." This book gives a solid introduction to "pure set theory" through transfinite recursion and the construction of the cumulative hierarchy of sets, and also attempts to explain how mathematical objects can be faithfully modeled within the universe of sets. In this new edition the author has added solutions to the exercises, and rearranged and reworked the text to improve the presentation.
The requirement to reason logically forms the basis of all mathematics, and hence mathematical logic is one of the most fundamental topics that students will study. Assuming no prior knowledge of the topic, this book provides an accessible introduction for advanced undergraduate students.
The breathtakingly rapid pace of change in computing makes it easy to overlook the pioneers who began it all. The Universal Computer: The Road from Leibniz to Turing explores the fascinating lives, ideas, and discoveries of seven remarkable mathematicians. It tells the stories of the unsung heroes of the computer age - the logicians.
Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In "Higher Topos Theory," Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally accessible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda's lemma. A sixth chapter presents an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that illustrate connections between the theory of higher topoi and ideas from classical topology.
This book provides an approach to the study of perturbation and discretization effects on the long-time behavior of dynamical and control systems. It analyzes the impact of time and space discretizations on asymptotically stable attracting sets, attractors, asumptotically controllable sets and their respective domains of attractions and reachable sets. Combining robust stability concepts from nonlinear control theory, techniques from optimal control and differential games and methods from nonsmooth analysis, both qualitative and quantitative results are obtained and new algorithms are developed, analyzed and illustrated by examples.
This book is an excellent starting point for any curriculum in fuzzy systems fields such as computer science, mathematics, business/economics and engineering. It covers the basics leading to: fuzzy clustering, fuzzy pattern recognition, fuzzy database, fuzzy image processing, soft computing, fuzzy applications in operations research, fuzzy decision making, fuzzy rule based systems, fuzzy systems modeling, fuzzy mathematics. It is not a book designed for researchers - it is where you really learn the "basics" needed for any of the above-mentioned applications. It includes many figures and problem sets at the end of sections.
By its nature, set theory does not depend on any previous mathematical knowl edge. Hence, an individual wanting to read this book can best find out if he is ready to do so by trying to read the first ten or twenty pages of Chapter 1. As a textbook, the book can serve for a course at the junior or senior level. If a course covers only some of the chapters, the author hopes that the student will read the rest himself in the next year or two. Set theory has always been a sub ject which people find pleasant to study at least partly by themselves. Chapters 1-7, or perhaps 1-8, present the core of the subject. (Chapter 8 is a short, easy discussion of the axiom of regularity). Even a hurried course should try to cover most of this core (of which more is said below). Chapter 9 presents the logic needed for a fully axiomatic set th ory and especially for independence or consistency results. Chapter 10 gives von Neumann's proof of the relative consistency of the regularity axiom and three similar related results. Von Neumann's 'inner model' proof is easy to grasp and yet it prepares one for the famous and more difficult work of GOdel and Cohen, which are the main topics of any book or course in set theory at the next level."
The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.
This book comprises revised full versions of lectures given during the 9th European Summer School in Logic, Languages, and Information, ESSLLI'97, held in Aix-en-Provence, France, in August 1997. The six lectures presented introduce the reader to the state of the art in the area of generalized quantifiers and computation. Besides an introductory survey by the volume editor various aspects of generalized quantifiers are studied in depth.
The explanation of the formal duality of Kerdock and Preparata codes is one of the outstanding results in the field of applied algebra in the last few years. This result is related to the discovery of large sets of quad riphase sequences over Z4 whose correlation properties are better than those of the best binary sequences. Moreover, the correlation properties of sequences are closely related to difference properties of certain sets in (cyclic) groups. It is the purpose of this book to illustrate the connection between these three topics. Most articles grew out of lectures given at the NATO Ad vanced Study Institute on "Difference sets, sequences and their correlation properties." This workshop took place in Bad Windsheim (Germany) in August 1998. The editors thank the NATO Scientific Affairs Division for the generous support of this workshop. Without this support, the present collection of articles would not have been realized."
Introduction Model theorists have often joked in recent years that the part of mathemat- ical logic known as "pure model theory" (or stability theory), as opposed to the older and more traditional "model theory applied to algebra" , turns out to have more and more to do with other subjects ofmathematics and to yield gen- uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the "Mordell-Lang conjecture for function fields" (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge- bra or number theory, but these appl~cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence...
This book is dedicated to Andrzej Ehrenfeucht on the occasion of
his 65th birthday. On personal invitation by the volume editors, 22
internationally well-known scientists from mathematical logics and
theoretical computer science participated in this project honoring
an excellent scientist with excellent papers centered around his
scientific work.
The purpose of this monograph is to develop a very general approach to the algebra ization of sententiallogics, to show its results on a number of particular logics, and to relate it to other existing approaches, namely to those based on logical matrices and the equational consequence developed by Blok, Czelakowski, Pigozzi and others. The main distinctive feature of our approachlies in the mathematical objects used as models of a sententiallogic: We use abstract logics, while the dassical approaches use logical matrices. Using models with more structure allows us to reflect in them the metalogical properties of the sentential logic. Since an abstract logic can be viewed as a "bundle" or family of matrices, one might think that the new models are essentially equivalent to the old ones; but we believe, after an overall appreciation of the work done in this area, that it is precisely the treatment of an abstract logic as a single object that gives rise to a useful -and beautiful- mathematical theory, able to explain the connections, not only at the logical Ievel but at the metalogical Ievel, between a sentential logic and the particular dass of models we associate with it, namely the dass of its full models. Traditionally logical matrices have been regarded as the most suitable notion of model in the algebraic studies of sentential logics; and indeed this notion gives sev eral completeness theorems and has generated an interesting mathematical theory."
This text provides a wide-ranging introduction to convex sets and functions, suitable for final-year undergraduates and also graduate students. Demanding only a modest knowledge of analysis and linear algebra, it discusses such diverse topics as number theory, classical extremum problems, combinatorial geometry, linear programming, game theory, polytopes, bodies of constant width, the gamma function, minimax approximation, and the theory of linear, classical, and matrix inequalities. |
![]() ![]() You may like...
Non-Classical Logics and Their…
Ulrich Hohle, Erich Peter Klement
Hardcover
R2,618
Discovery Miles 26 180
Logic, Computation, Hierarchies
Vasco Brattka, Hannes Diener, …
Hardcover
R4,752
Discovery Miles 47 520
|