Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
This book gives a rigorous treatment of entanglement measures in the general context of quantum field theory. It covers a broad range of models and the use of fields allows us to properly take the localization of systems into account. The required mathematical techniques are introduced in a self-contained way.
This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems.
The 3rd edition of this important dictionary offers more than 12,000 entries with expanded encyclopaedic-style definitions making this major reference work invaluable to practitioners, researchers and students working in the area of polymer science and technology. This new edition now includes entries on computer simulation and modeling, surface and interfacial properties and their characterization, functional and smart polymers. New and controlled architectures of polymers, especially dendrimers and controlled radical polymerization are also covered.
This book introduces readers to essential tools for the measurement and analysis of information loss in signal processing systems. Employing a new information-theoretic systems theory, the book analyzes various systems in the signal processing engineer's toolbox: polynomials, quantizers, rectifiers, linear filters with and without quantization effects, principal components analysis, multirate systems, etc. The user benefit of signal processing is further highlighted with the concept of relevant information loss. Signal or data processing operates on the physical representation of information so that users can easily access and extract that information. However, a fundamental theorem in information theory-data processing inequality-states that deterministic processing always involves information loss. These measures form the basis of a new information-theoretic systems theory, which complements the currently prevailing approaches based on second-order statistics, such as the mean-squared error or error energy. This theory not only provides a deeper understanding but also extends the design space for the applied engineer with a wide range of methods rooted in information theory, adding to existing methods based on energy or quadratic representations.
This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Luders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered here in this framework. The authors begin by generalizing the so-called Mensky approach, which is based on restricted path integral through quantum corridors. The measuring system is then considered to be an open quantum system following a stochastic Schroedinger equation. Quantum stochastic trajectories (in the Bohmian sense) and their role in basic quantum processes are discussed in detail. The decoherence process is thereby described in terms of classical trajectories issuing from the violation of the noncrossing rule of quantum trajectories.
This textbook is the result of the enhancement of several courses on non-equilibrium statistics, stochastic processes, stochastic differential equations, anomalous diffusion and disorder. The target audience includes students of physics, mathematics, biology, chemistry, and engineering at undergraduate and graduate level with a grasp of the basic elements of mathematics and physics of the fourth year of a typical undergraduate course. The little-known physical and mathematical concepts are described in sections and specific exercises throughout the text, as well as in appendices. Physical-mathematical motivation is the main driving force for the development of this text. It presents the academic topics of probability theory and stochastic processes as well as new educational aspects in the presentation of non-equilibrium statistical theory and stochastic differential equations.. In particular it discusses the problem of irreversibility in that context and the dynamics of Fokker-Planck. An introduction on fluctuations around metastable and unstable points are given. It also describes relaxation theory of non-stationary Markov periodic in time systems. The theory of finite and infinite transport in disordered networks, with a discussion of the issue of anomalous diffusion is introduced. Further, it provides the basis for establishing the relationship between quantum aspects of the theory of linear response and the calculation of diffusion coefficients in amorphous systems.
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Neel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edition presents expanded sections on phase transitions, liquid crystals and magnetic systems, for all problems detailed solutions are provided. It is intended for students in physics and chemistry and provides a unique combination of thorough theoretical explanation and presentation of applications in both areas. Chapter summaries, highlighted essentials and problems with solutions enable a self sustained approach and deepen the knowledge. It is intended for students in physics and chemistry and provides a unique combination of thorough theoretical explanation and presentation of applications in both areas. Chapter summaries, highlighted essentials and problems with solutions enable a self sustained approach and deepen the knowledge.
This textbook takes the reader on a tour of the most important landmarks of theoretical physics: classical, quantum, and statistical mechanics, relativity, electrodynamics, as well as the most modern and exciting of all: elementary particles and the physics of fractals. The second edition has been supplemented with a new chapter devoted to concise though complete presentation of dynamical systems, bifurcations and chaos theory. The treatment is confined to the essentials of each area, presenting all the central concepts and equations at an accessible level. Chapters 1 to 4 contain the standard material of courses in theoretical physics and are supposed to accompany lectures at the university; thus they are rather condensed. They are supposed to fill one year of teaching. Chapters 5 and 6, in contrast, are written less condensed since this material may not be part of standard lectures and thus could be studied without the help of a university teacher. An appendix on elementary particles lies somewhere in between: It could be a summary of a much more detailed course, or studied without such a course. Illustrations and numerous problems round off this unusual textbook. It will ideally accompany the students all along their course in theoretical physics and prove indispensable in preparing and revising the exams. It is also suited as a reference for teachers or scientists from other disciplines who are interested in the topic.
Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.
This book contains the proceedings as well as invited papers for the first annual conference of the UNESCO Unitwin Complex System Digital Campus (CSDC), which is an international initiative gathering 120 Universities on four continents, and structured in ten E-Departments. First Complex Systems Digital Campus World E-Conference 2015 features chapters from the latest research results on theoretical questions of complex systems and their experimental domains. The content contained bridges the gap between the individual and the collective within complex systems science and new integrative sciences on topics such as: genes to organisms to ecosystems, atoms to materials to products, and digital media to the Internet. The conference breaks new ground through a dedicated video-conferencing system - a concept at the heart of the international UNESCO UniTwin, embracing scientists from low-income and distant countries. This book promotes an integrated system of research, education, and training. It also aims at contributing to global development by taking into account its social, economic, and cultural dimensions. First Complex Systems Digital Campus World E-Conference 2015 will appeal to students and researchers working in the fields of complex systems, statistical physics, computational intelligence, and biological physics.
In this book the dynamics of the non-ideal oscillatory system, in which the excitation is influenced by the response of the oscillator, is presented. Linear and nonlinear oscillators with one or more degrees of freedom interacting with one or more energy sources are treated. This concerns for example oscillating systems excited by a deformed elastic connection, systems excited by an unbalanced rotating mass, systems of parametrically excited oscillator and an energy source, frictionally self-excited oscillator and an energy source, energy harvesting system, portal frame - non-ideal source system, non-ideal rotor system, planar mechanism - non-ideal source interaction. For the systems the regular and irregular motions are tested. The effect of self-synchronization, chaos and methods for suppressing chaos in non-ideal systems are considered. In the book various types of motion control are suggested. The most important property of the non-ideal system connected with the jump-like transition from a resonant state to a non-resonant one is discussed. The so called 'Sommerfeld effect', resonant unstable state and jumping of the system into a new stable state of motion above the resonant region is explained. A mathematical model of the system is solved analytically and numerically. Approximate analytical solving procedures are developed. Besides, simulation of the motion of the non-ideal system is presented. The obtained results are compared with those for the ideal case. A significant difference is evident. The book aims to present the established results and to expand the literature in non-ideal vibrating systems. A further intention of the book is to give predictions of the effects for a system where the interaction between an oscillator and the energy source exist. The book is targeted at engineers and technicians dealing with the problem of source-machine system, but is also written for PhD students and researchers interested in non-linear and non-ideal problems.
This thesis discusses the random Euclidean bipartite matching problem, i.e., the matching problem between two different sets of points randomly generated on the Euclidean domain. The presence of both randomness and Euclidean constraints makes the study of the average properties of the solution highly relevant. The thesis reviews a number of known results about both matching problems and Euclidean matching problems. It then goes on to provide a complete and general solution for the one dimensional problem in the case of convex cost functionals and, moreover, discusses a potential approach to the average optimal matching cost and its finite size corrections in the quadratic case. The correlation functions of the optimal matching map in the thermodynamical limit are also analyzed. Lastly, using a functional approach, the thesis puts forward a general recipe for the computation of the correlation function of the optimal matching in any dimension and in a generic domain.
These proceedings of the 18th International Conference on Difference Equations and Applications cover a number of different aspects of difference equations and discrete dynamical systems, as well as the interplay between difference equations and dynamical systems. The conference was organized by the Department of Mathematics at the Universitat Autonoma de Barcelona (UAB) under the auspices of the International Society of Difference Equations (ISDE) and held in Barcelona (Catalonia, Spain) in July 2012. Its purpose was to bring together experts and novices in these fields to discuss the latest developments. The book gathers contributions in the field of combinatorial and topological dynamics, complex dynamics, applications of difference equations to biology, chaotic linear dynamics, economic dynamics and control and asymptotic behavior, and periodicity of difference equations. As such it is of interest to researchers and scientists engaged in the theory and applications of difference equations and discrete dynamical systems.
This authoritative book presents a comprehensive account of the essential roles of nonlinear dynamic and chaos theories in understanding, modeling, and forecasting hydrologic systems. This is done through a systematic presentation of: (1) information on the salient characteristics of hydrologic systems and on the existing theories for their modeling; (2) the fundamentals of nonlinear dynamic and chaos theories, methods for chaos identification and prediction, and associated issues; (3) a review of the applications of chaos theory in hydrology; and (4) the scope and potential directions for the future. This book bridges the divide between the deterministic and the stochastic schools in hydrology, and is well suited as a textbook for hydrology courses.
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
A completely revised edition that combines a comprehensive coverage of statistical and thermal physics with enhanced computational tools, accessibility, and active learning activities to meet the needs of today's students and educators This revised and expanded edition of Statistical and Thermal Physics introduces students to the essential ideas and techniques used in many areas of contemporary physics. Ready-to-run programs help make the many abstract concepts concrete. The text requires only a background in introductory mechanics and some basic ideas of quantum theory, discussing material typically found in undergraduate texts as well as topics such as fluids, critical phenomena, and computational techniques, which serve as a natural bridge to graduate study. Completely revised to be more accessible to students Encourages active reading with guided problems tied to the text Updated open source programs available in Java, Python, and JavaScript Integrates Monte Carlo and molecular dynamics simulations and other numerical techniques Self-contained introductions to thermodynamics and probability, including Bayes' theorem A fuller discussion of magnetism and the Ising model than other undergraduate texts Treats ideal classical and quantum gases within a uniform framework Features a new chapter on transport coefficients and linear response theory Draws on findings from contemporary research Solutions manual (available only to instructors)
This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed to produce artifacts in interpretation unless the observer has a solid background in the mathematics of limited reproducibility. The material covered is presented in a modular approach, allowing more advanced sections to be skipped if the reader is primarily interested in applications. At the same time, most derivations of analytical solutions for the selected examples are provided in full length to guide more advanced readers in their attempts to derive solutions on their own. The book employs uniform notation throughout, and a glossary has been added to define the most important notions discussed.
This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.
The revised second edition of this textbook provides the reader with a solid foundation in probability theory and statistics as applied to the physical sciences, engineering and related fields. It covers a broad range of numerical and analytical methods that are essential for the correct analysis of scientific data, including probability theory, distribution functions of statistics, fits to two-dimensional data and parameter estimation, Monte Carlo methods and Markov chains. Features new to this edition include: * a discussion of statistical techniques employed in business science, such as multiple regression analysis of multivariate datasets. * a new chapter on the various measures of the mean including logarithmic averages. * new chapters on systematic errors and intrinsic scatter, and on the fitting of data with bivariate errors. * a new case study and additional worked examples. * mathematical derivations and theoretical background material have been appropriately marked, to improve the readability of the text. * end-of-chapter summary boxes, for easy reference. As in the first edition, the main pedagogical method is a theory-then-application approach, where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and practical application of the material. The level is appropriate for undergraduates and beginning graduate students, and as a reference for the experienced researcher. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data, as well as exercises and examples to aid the readers' understanding of the topic.
This book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present information theory and transfer entropy in depth. A key feature of the approach is the authors' work to show the relationship between information flow and complexity. The later chapters demonstrate information transfer in canonical systems, and applications, for example in neuroscience and in finance. The book will be of value to advanced undergraduate and graduate students and researchers in the areas of computer science, neuroscience, physics, and engineering.
This monograph investigates violations of statistical stability of physical events, variables, and processes and develops a new physical-mathematical theory taking into consideration such violations - the theory of hyper-random phenomena. There are five parts. The first describes the phenomenon of statistical stability and its features, and develops methods for detecting violations of statistical stability, in particular when data is limited. The second part presents several examples of real processes of different physical nature and demonstrates the violation of statistical stability over broad observation intervals. The third part outlines the mathematical foundations of the theory of hyper-random phenomena, while the fourth develops the foundations of the mathematical analysis of divergent and many-valued functions. The fifth part contains theoretical and experimental studies of statistical laws where there is violation of statistical stability. The monograph should be of particular interest to engineers and scientists in general who study the phenomenon of statistical stability and use statistical methods for high-precision measurements, prediction, and signal processing over long observation intervals.
This thesis presents a theoretical analysis of the behavior of glasses under external perturbations, i.e. compression and shear straining. Written in a pedagogical style, it explains every facet of the problem in detail, including many crucial steps that cannot be found in the existing literature-making it particularly useful for students and as an introduction to the subject of glassy physics. In glassy systems the behavior under external compression and shear-strain is quite peculiar. Many complex phenomena are observed and grasping them fully would be a major step toward a complete theory of the glass transition. This thesis makes important advances in this direction, analyzing the behavior of glassy states in painstaking detail and reproducing it in the framework of a recently developed mean field theory for glasses that has proven extremely successful for jamming, demonstrating its predictive power in the context of metastable glassy states obtained through nonequilibrium protocols.
This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.
Scheck's textbook starts with a concise introduction to classical thermodynamics, including geometrical aspects. Then a short introduction to probabilities and statistics lays the basis for the statistical interpretation of thermodynamics. Phase transitions, discrete models and the stability of matter are explained in great detail.Thermodynamics has a special role in theoretical physics. Due to the general approach of thermodynamics the field has as a bridging function between several areas like the theory of condensed matter, elementary particle physics, astrophysics and cosmology. The classical thermodynamics describes predominantly averaged properties of matter, reaching from few particle systems and state of matter to stellar objects. Statistical Thermodynamics covers the same fields, but explores them in greater depth and unifies classical statistical mechanics with quantum theory of multiple particle systems. The content is presented as two tracks: the fast track for master students, providing the essentials, and the intensive track for all wanting to get in depth knowledge of the field. Clearly labelled material and sections guide students through the preferred level of treatment. Numerous problems and worked examples will provide successful access to Statistical Physics and Thermodynamics.
This book acquaints readers with recent developments in dynamical systems theory and its applications, with a strong focus on the control and estimation of nonlinear systems. Several algorithms are proposed and worked out for a set of model systems, in particular so-called input-affine or bilinear systems, which can serve to approximate a wide class of nonlinear control systems. These can either take the form of state space models or be represented by an input-output equation. The approach taken here further highlights the role of modern mathematical and conceptual tools, including differential algebraic theory, observer design for nonlinear systems and generalized canonical forms. |
You may like...
Attractor Dimension Estimates for…
Nikolay Kuznetsov, Volker Reitmann
Hardcover
R5,900
Discovery Miles 59 000
Traffic and Granular Flow 2019
Iker Zuriguel, Angel Garcimartin, …
Hardcover
R4,308
Discovery Miles 43 080
Mystery Of Time, The: Asymmetry Of Time…
Alexander L Kuzemsky
Hardcover
R3,980
Discovery Miles 39 800
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,781
Discovery Miles 17 810
Simplicity of Complexity in Economic and…
Dariusz Grech, Janusz Miskiewicz
Hardcover
R4,228
Discovery Miles 42 280
Feedback Economics - Economic Modeling…
Robert Y. Cavana, Brian C. Dangerfield, …
Hardcover
|