![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
The book covers all aspects from the expansion of the Boltzmann transport equation with harmonic functions to application to devices, where transport in the bulk and in inversion layers is considered. The important aspects of stabilization and band structure mapping are discussed in detail. This is done not only for the full band structure of the 3D k-space, but also for the warped band structure of the quasi 2D hole gas. Efficient methods for building the Schrodinger equation for arbitrary surface or strain directions, gridding of the 2D k-space and solving it together with the other two equations are presented."
Nonadiabatic transition is a highly multidisciplinary concept and phenomenon, constituting a fundamental mechanism of state and phase changes in various dynamical processes of physics, chemistry and biology, such as molecular dynamics, energy relaxation, chemical reaction, and electron and proton transfer. Control of molecular processes by laser fields is also an example of time-dependent nonadiabatic transition.In this new edition, the original chapters are updated to facilitate enhanced understanding of the concept and applications. Three new chapters - comprehension of nonadiabatic chemical dynamics, control of chemical dynamics, and manifestation of molecular functions - are also added.
STATISTICAL PHYSICS AND ECONOMICS covers systematically and in simple language the physical foundations of evolution equations, stochastic processes, and generalized Master equations applied to complex economic systems. Strong emphasis is placed on concepts, methods, and techniques for modeling, assessment, and solving or estimation of economic problems in an attempt to understand the large variability of financial markets, trading and communication networks, barriers and acceleration of the economic growth as well as the kinetics of product and money flows. The main focus of the book is a clear physical understanding of the self-organizing principles in social and economic systems. This modern introduction will be a useful tool for researchers, engineers, as well as graduate and post-graduate students in econophysics and related topics.
Statistical thermodynamics and the related domains of statistical physics and quantum mechanics are very important in many fields of research, including plasmas, rarefied gas dynamics, nuclear systems, lasers, semiconductors, superconductivity, ortho- and para-hydrogen, liquid helium, and so on. Statistical Thermodynamics: Understanding the Properties of Macroscopic Systems provides a detailed overview of how to apply statistical principles to obtain the physical and thermodynamic properties of macroscopic systems. Intended for physics, chemistry, and other science students at the graduate level, the book starts with fundamental principles of statistical physics, before diving into thermodynamics. Going further than many advanced textbooks, it includes Bose-Einstein, Fermi-Dirac statistics, and Lattice dynamics as well as applications in polaron theory, electronic gas in a magnetic field, thermodynamics of dielectrics, and magnetic materials in a magnetic field. The book concludes with an examination of statistical thermodynamics using functional integration and Feynman path integrals, and includes a wide range of problems with solutions that explain the theory.
Models for the mechanical behavior of porous media introduced more than 50 years ago are still relied upon today, but more recent work shows that, in some cases, they may violate the laws of thermodynamics. In The Thermophysics of Porous Media, the author shows that physical consistency requires a unique description of dynamic processes that involve porous media, and that new dynamic variables-porosity, saturation, and megascale concentration-naturally enter into the large-scale description of porous media. The new degrees of freedom revealed in this study predict new dynamic processes that are not associated with compressional motions. The book details the construction of a Lorentz invariant thermodynamic lattice gas model and shows how the associated nonrelativistic, Galilean invariant model can be used to describe flow in porous media. The author develops the equations of seismic wave propagation in porous media, the associated boundary conditions, and surface waves. He also constructs the equations for both immiscible and miscible flows in porous media and their related instability problems. The implications of the physical theory presented in this book are significant, particularly in applications in geophysics and the petroleum industry. The Thermophysics of Porous Media offers a unique opportunity to examine the dynamic role that porosity plays in porous materials.
"The career structure and funding of the universities [...] currently strongly d- courages academics and faculties from putting any investment into teaching - there are no career or ?nancial rewards in it. This is a great pity, because [...] it is the need toengage indialogue,and to makethings logicaland clear,that istheprimary defence against obscurantism and abstraction. " B. Ward-Perkins, The fall of Rome, Oxford (2005) This is the ?rst volume of a planned two-volume treatise on non-equilibrium phase transitions. While such a topic might sound rather special and a- demic, non-equilibrium critical phenomena occur in much wider contexts than their equilibrium counterparts, and without having to ?ne-tune th- modynamic variables to their 'critical' values in each case. As a matter of fact, most systems in Nature are out of equilibrium. Given that the theme of non-equilibrium phase transitions of second order is wide enough to amount essentially to a treatment of almost all theoretical aspects of non-equilibrium many-body physics, a selection of topics is required to keep such a project within a manageable length. Therefore, Vol. 1 discusses a particular kind of non-equilibrium phase transitions, namely those between an active, ?- tuating state and absorbing states. Volume 2 (to be written by one of us (MH) with M. Pleimling) will be devoted to ageing phenomena.
This book, provides a general introduction to the ideas and methods of statistical mechanics with the principal aim of meeting the needs of Master's students in chemical, mechanical, and materials science engineering. Extensive introductory information is presented on many general physics topics in which students in engineering are inadequately trained, ranging from the Hamiltonian formulation of classical mechanics to basic quantum mechanics, electromagnetic fields in matter, intermolecular forces, and transport phenomena. Since engineers should be able to apply physical concepts, the book also focuses on the practical applications of statistical physics to material science and to cutting-edge technologies, with brief but informative sections on, for example, interfacial properties, disperse systems, nucleation, magnetic materials, superfluidity, and ultralow temperature technologies. The book adopts a graded approach to learning, the opening four basic-level chapters being followed by advanced "starred" sections in which special topics are discussed. Its relatively informal style, including the use of musical metaphors to guide the reader through the text, will aid self-learning.
This thoroughly revised 5th edition of Zeh's classic text investigates irreversible phenomena and their foundation in classical, quantum and cosmological settings. It includes new sections on the meaning of probabilities in a cosmological context, irreversible aspects of quantum computers, and various consequences of the expansion of the Universe. In particular, the book offers an analysis of the physical concept of time.
Communication-Protocol-Based Filtering and Control of Networked Systems is a self-contained treatment of the state of the art in communication-protocol-based filtering and control; recent advances in networked systems; and the potential for application in sensor networks. This book provides new concepts, new models and new methodologies with practical significance in control engineering and signal processing. The book first establishes signal-transmission models subject to different communication protocols and then develops new filter design techniques based on those models and preset requirements for filtering performance. The authors then extend this work to finite-horizon H-infinity control, ultimately bounded control and finite-horizon consensus control. The focus throughout is on three typical communications protocols: the round-robin, random-access and try-once-and-discard protocols, and the systems studied are drawn from a variety of classes, among them nonlinear systems, time-delayed and time-varying systems, multi-agent systems and complex networks. Readers are shown the latest techniques-recursive linear matrix inequalities, backward recursive difference equations, stochastic analysis and mapping methods. The unified framework for communication-protocol-based filtering and control for different networked systems established in the book will be of interest to academic researchers and practicing engineers working with communications and other signal-processing systems. Senior undergraduate and graduate students looking to increase their knowledge of current methods in control and signal processing of networked systems will also find this book valuable.
This authoritative text offers a complete overview on the statistical mechanics and electrodynamics of physical processes in dense plasma systems. The author emphasizes laboratory-based experiments and astrophysical observations of plasma phenomena, elucidated through the fundamentals. The coverage encompasses relevant condensed matter physics, atomic physics, nuclear physics, and astrophysics, including such key topics as phase transitions, transport, optical and nuclear processes. This essential resource also addresses exciting, cutting edge topics in the field, including metallic hydrogen, stellar and planetary magnetisms, pycnonuclear reactions, and gravitational waves. Scientists, researchers, and students in plasma physics, condensed matter physics, materials science, atomic physics, nuclear physics, and astrophysics will benefit from this work. Setsuo Ichimaru is a distinguished professor at the University of Tokyo, and has been a visiting member at The Institute for Advanced Study in Princeton, New Jersey, at the University of California, San Diego (UCSD), the Institute for Theoretical Physics at Johannes Kepler University, and the Max Planck Institute for Quantum Optics. He is a recipient of the Subramanyan Chandrasekhar Prize of Plasma Physics from the Association of Asia-Pacific Physical Societies and the Humboldt Research Award from the Alexander von Humboldt Foundation.
Finite element methods have become ever more important to engineers as tools for design and optimization, now even for solving non-linear technological problems. However, several aspects must be considered for finite-element simulations which are specific for non-linear problems: These problems require the knowledge and the understanding of theoretical foundations and their finite-element discretization as well as algorithms for solving the non-linear equations. This book provides the reader with the required knowledge covering the complete field of finite element analyses in solid mechanics. It is written for advanced students in engineering fields but serves also as an introduction into non-linear simulation for the practising engineer.
This authoritative text offers a complete overview on the statistical mechanics and electrodynamics of physical processes in dense plasma systems. The author emphasizes laboratory-based experiments and astrophysical observations of plasma phenomena, elucidated through the fundamentals. The coverage encompasses relevant condensed matter physics, atomic physics, nuclear physics, and astrophysics, including such key topics as phase transitions, transport, optical and nuclear processes. This essential resource also addresses exciting, cutting edge topics in the field, including metallic hydrogen, stellar and planetary magnetisms, pycnonuclear reactions, and gravitational waves. Scientists, researchers, and students in plasma physics, condensed matter physics, materials science, atomic physics, nuclear physics, and astrophysics will benefit from this work. Setsuo Ichimaru is a distinguished professor at the University of Tokyo, and has been a visiting member at The Institute for Advanced Study in Princeton, New Jersey, at the University of California, San Diego (UCSD), the Institute for Theoretical Physics at Johannes Kepler University, and the Max Planck Institute for Quantum Optics. He is a recipient of the Subramanyan Chandrasekhar Prize of Plasma Physics from the Association of Asia-Pacific Physical Societies and the Humboldt Research Award from the Alexander von Humboldt Foundation.
This book presents recent results of basic research in the field of Raman scattering by optic and acoustic phonons in semiconductors, quantum wells and superlattices. It also describes various new applications for analytical materials research which have emerged alongside with scientific progress. Trends in Raman techniques and instrumentation and their implications for future developments are illustrated.
Random walks often provide the underlying mesoscopic mechanism for transport phenomena in physics, chemistry and biology. In particular, anomalous transport in branched structures has attracted considerable attention. Combs are simple caricatures of various types of natural branched structures that belong to the category of loopless graphs. The comb model was introduced to understand anomalous transport in percolation clusters. Comb-like models have been widely adopted to describe kinetic processes in various experimental applications in medical physics and biophysics, chemistry of polymers, semiconductors, and many other interdisciplinary applications.The authors present a random walk description of the transport in specific comb geometries, ranging from simple random walks on comb structures, which provide a geometrical explanation of anomalous diffusion, to more complex types of random walks, such as non-Markovian continuous-time random walks. The simplicity of comb models allows to perform a rigorous analysis and to obtain exact analytical results for various types of random walks and reaction-transport processes.
Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory-two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The algorithmic aspects of transformations-compression, expansion, cyclic, and more The principles of best-practice programming How molecules transmit and modify information via collisions and chemical reactions Using examples from physical and organic chemistry, this book demonstrates how the disciplines of thermodynamics and information theory are intertwined. Accessible to curiosity-driven chemists with knowledge of basic calculus, probability, and statistics, the book provides a fresh perspective on time-honored subjects such as state transformations, heat and work exchanges, and chemical reactions.
This book covers the broad subject of equilibrium statistical mechanics along with many advanced and modern topics such as nucleation, spinodal decomposition, inherent structures of liquids and liquid crystals. Unlike other books on the market, this comprehensive text not only deals with the primary fundamental ideas of statistical mechanics but also covers contemporary topics in this broad and rapidly developing area of chemistry and materials science.
Der Grundkurs Theoretische Physik deckt in 7 Banden alle fur das Diplom und fur Bachelor/Master-Studiengange massgeblichen Gebiete ab. Jeder Band vermittelt das im jeweiligen Semester notwendige theoretisch-physikalische Rustzeug. UEbungsaufgaben mit ausfuhrlichen Loesungen dienen der Vertiefung des Stoffs. Der 6. Band zur Statistischen Physik wurde fur die Neuauflage grundlegend uberarbeitet und um aktuelle Entwicklungen erganzt. Durch die zweifarbige Gestaltung ist der Stoff jetzt noch ubersichtlicher gegliedert.
This text presents an introduction to the field of statistical physics of macromolecules, from the basic concepts to modern achievements. Applications in various fields of polymer physical chemistry and molecular biophysics are also covered, as are: the fundamentals of statistical theory of polymer solutions and melts; classical, sealing and renormalization group approaches; the main ideas of statistical theories of polymer liquid crystals, polymer networks and polyelectrolytes; dynamic viscoelastic behavior of polymer systems; models of house, Zimm and reptation concepts; and specific features of main biopolymers - DNA and proteins. This English edition also includes sections describing the most important recent advances such as: statistical theory of DNA gel-electrophoresis, polymers at interfaces, and dynamics of concentrated solutions of rigid polymers.
This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions: the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reactions and moving systems. The book covers the close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Flocks of birds, schools of fish and swarms of locusts display amazing forms of collective motion, while huge numbers of glow worms can emit light signals with almost unbelievable synchronization. These and many other collective phenomena in animal societies take place according to laws very similar to those governing the collective behavior in the inanimate nature, such as the magnetization of iron and the light radiation of lasers. During recent years, this has led to the study of swarm behavior as a challenging new field of science, in which ideas from the physical world are applied in order to understand the formation and structure of animal swarms. From these studies, it has become clear that such collective behavior of animals emerges in a self-organized way, without any need of overall coordination. In this book, we present different swarm phenomena of the animal world and compare them to their counterparts in physics, in a conceptual and non-technical way, addressed to a general readership.
Application of New Cybernetics in Physics describes the application of new cybernetics to physical problems and the resolution of basic physical paradoxes by considering external observer influence. This aids the reader in solving problems that were solved incorrectly or have not been solved. Three groups of problems of the new cybernetics are considered in the book: (a) Systems that can be calculated based on known physics of subsystems. This includes the external observer influence calculated from basic physical laws (ideal dynamics) and dynamics of a physical system influenced even by low noise (observable dynamics). (b) Emergent systems. This includes external noise from the observer by using the black box model (complex dynamics), external noise from the observer by using the observer's intuition (unpredictable dynamics), defining boundaries of application of scientific methods for system behavior prediction, and the role of the observer's intuition for unpredictable systems. (c) Methods for solution of basic physical paradoxes by using methods of the new cybernetics: the entropy increase paradox, Schroedinger's cat paradox (wave package reduction in quantum mechanics), the black holes information paradox, and the time wormholes grandfather paradox. All of the above paradoxes have the same resolution based on the principles of new cybernetics. Indeed, even a small interaction of an observer with an observed system results in their time arrows' alignment (synchronization) and results in the paradox resolution and appearance of the universal time arrow.
This invaluable book provides a broad introduction to a rapidly growing area of nonequilibrium statistical physics. The first part of the book complements the classical book on the Langevin and Fokker-Planck equations (H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, 1996)). Some topics and methods of solutions are presented and discussed in details which are not described in Risken's book, such as the method of similarity solution, the method of characteristics, transformation of diffusion processes into the Wiener process in different prescriptions, harmonic noise and relativistic Brownian motion. Connection between the Langevin equation and Tsallis distribution is also discussed.Due to the growing interest in the research on the generalized Langevin equations, several of them are presented. They are described with some details.Recent research on the integro-differential Fokker-Planck equation derived from the continuous time random walk model shows that the topic has several aspects to be explored. This equation is worked analytically for the linear force and the generic waiting time probability distribution function. Moreover, generalized Klein-Kramers equations are also presented and discussed. They have the potential to be applied to natural systems, such as biological systems.
Key features: Presents a theoretical outline for each chapter. Motivates the students with standard mechanics problems with step-by-step explanations. Challenges the students with more complex problems with detailed solutions.
With a foreword by Freeman Dyson, the handbook brings together
leading mathematicians and physicists to offer a comprehensive
overview of random matrix theory, including a guide to new
developments and the diverse range of applications of this
approach. |
![]() ![]() You may like...
Traffic and Granular Flow 2019
Iker Zuriguel, Angel Garcimartin, …
Hardcover
R4,479
Discovery Miles 44 790
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,839
Discovery Miles 18 390
Attractor Dimension Estimates for…
Nikolay Kuznetsov, Volker Reitmann
Hardcover
R6,335
Discovery Miles 63 350
Corruption Networks - Concepts and…
Oscar M. Granados, Jose R. Nicolas-Carlock
Hardcover
R3,607
Discovery Miles 36 070
Feedback Economics - Economic Modeling…
Robert Y. Cavana, Brian C. Dangerfield, …
Hardcover
Langevin Equation, The: With…
Yuri P. Kalmykov, William T. Coffey
Hardcover
R7,909
Discovery Miles 79 090
|