![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
Statistical mechanics is concerned with defining the thermodynamic properties of a macroscopic sample in terms of the properties of the microscopic systems of which it is composed. The previous book Introduction to Statistical Mechanics provided a clear, logical, and self-contained treatment of equilibrium statistical mechanics starting from Boltzmann's two statistical assumptions, and presented a wide variety of applications to diverse physical assemblies. An appendix provided an introduction to non-equilibrium statistical mechanics through the Boltzmann equation and its extensions. The coverage in that book was enhanced and extended through the inclusion of many accessible problems. The current book provides solutions to those problems. These texts assume only introductory courses in classical and quantum mechanics, as well as familiarity with multi-variable calculus and the essentials of complex analysis. Some knowledge of thermodynamics is also assumed, although the analysis starts with an appropriate review of that topic. The targeted audience is first-year graduate students and advanced undergraduates, in physics, chemistry, and the related physical sciences. The goal of these texts is to help the reader obtain a clear working knowledge of the very useful and powerful methods of equilibrium statistical mechanics and to enhance the understanding and appreciation of the more advanced texts.
This book presents a novel account of the human temporal dimension called the "human temporality" and develops a special mathematical formalism for describing such an object as the human mind. One of the characteristic features of the human mind is its temporal extent. For objects of physical reality, only the present exists, which may be conceived as a point-like moment in time. In the human temporality, the past retained in the memory, the imaginary future, and the present coexist and are closely intertwined and impact one another. This book focuses on one of the fragments of the human temporality called the complex present. A detailed analysis of the classical and modern concepts has enabled the authors to put forward the idea of the multi-component structure of the present. For the concept of the complex present, the authors proposed a novel account that involves a qualitative description and a special mathematical formalism. This formalism takes into account human goal-oriented behavior and uncertainty in human perception. The present book can be interesting for theoreticians, physicists dealing with modeling systems where the human factor plays a crucial role, philosophers who are interested in applying philosophical concepts to constructing mathematical models, and psychologists whose research is related to modeling mental processes.
There is a great deal of research into wave propagation in random media, in such fields as applied mathematics, acoustics, optics, materials science, atomic physics and geophysics. This book provides theoretical and practical introductions at research level to topics such as localization of waves, band gap materials, random matrices, dielectric media, laser cooled atoms, wave scattering from rough surfaces, randomly layered media, seismic waves and imaging the earth.
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
The control of open quantum systems and their associated quantum thermodynamic properties is a topic of growing importance in modern quantum physics and quantum chemistry research. This unique and self-contained book presents a unifying perspective of such open quantum systems, first describing the fundamental theory behind these formidably complex systems, before introducing the models and techniques that are employed to control their quantum thermodynamics processes. A detailed discussion of real quantum devices is also covered, including quantum heat engines and quantum refrigerators. The theory of open quantum systems is developed pedagogically, from first principles, and the book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
This book features research presented and discussed during the Research and Innovation Forum (Rii Forum) 2021. The Covid-19 pandemic and its social, political, and economic implications had confirmed that a more thorough debate on these issues and topics was needed. For this reason, the Rii Forum 2021 was devoted to the broadly defined question of the short- and long-term impact of the pandemic on our societies. This volume serves as an essential resource to understand the diverse ways in which Covid-19 impacted our societies, including the capacity to innovate, advances in technology, the evolution of the healthcare systems, business model innovation, the prospects of growth, the stability of political systems, and the future of education.
The aim of this book is to provide the fundamentals of statistical physics and its application to condensed matter. The combination of statistical mechanics and quantum mechanics has provided an understanding of properties of matter leading to spectacular technological innovations and discoveries in condensed matter which have radically changed our daily life.The book gives the steps to follow to understand fundamental theories and to apply these to real materials.
The aim of this book is to provide the fundamentals of statistical physics and its application to condensed matter. The combination of statistical mechanics and quantum mechanics has provided an understanding of properties of matter leading to spectacular technological innovations and discoveries in condensed matter which have radically changed our daily life.The book gives the steps to follow to understand fundamental theories and to apply these to real materials.
This book establishes the foundations of non-equilibrium quantum statistical mechanics in order to support students and academics in developing and building their understanding. The formal theory is derived from first principles by mathematical analysis, with concrete physical interpretations and worked examples throughout. It explains the central role of entropy; its relation to the probability operator and the generalisation to transitions, as well as providing first principles derivation of the von Neumann trace form, the Maxwell-Boltzmann form and the Schroedinger equation.
Gathering the proceedings of the 12th CHAOS2019 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.
Key features: Presents a theoretical outline for each chapter. Motivates the students with standard mechanics problems with step-by-step explanations. Challenges the students with more complex problems with detailed solutions.
Brownian diffusion is the motion of one or more solute molecules in a sea of very many, much smaller solvent molecules. Its importance today owes mainly to cellular chemistry, since Brownian diffusion is one of the ways in which key reactant molecules move about inside a living cell. This book focuses on the four simplest models of Brownian diffusion: the classical Fickian model, the Einstein model, the discrete-stochastic (cell-jumping) model, and the Langevin model. The authors carefully develop the theories underlying these models, assess their relative advantages, and clarify their conditions of applicability. Special attention is given to the stochastic simulation of diffusion, and to showing how simulation can complement theory and experiment. Two self-contained tutorial chapters, one on the mathematics of random variables and the other on the mathematics of continuous Markov processes (stochastic differential equations), make the book accessible to researchers from a broad spectrum of technical backgrounds.
This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens - or doesn't! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under which such structure formation takes place. To make the content more accessible, these conditions are described at a comparatively elementary mathematical level by employing ideas from statistical topography.
In this book we have solved the complicated problem of constructing upper bounds for many-time averages for the case of a fairly broad class of model systems with four-fermion interaction. The methods proposed in this book for solving this problem will undoubtedly find application not only for the model systems associated with the theory of superconductivity considered here. The theoretical methods developed in Chapters 1 and 2 are already applicable to a much broader class of model systems from statistical physics and the theory of elementary particles.
This book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present information theory and transfer entropy in depth. A key feature of the approach is the authors' work to show the relationship between information flow and complexity. The later chapters demonstrate information transfer in canonical systems, and applications, for example in neuroscience and in finance. The book will be of value to advanced undergraduate and graduate students and researchers in the areas of computer science, neuroscience, physics, and engineering.
This is the first book devoted to chimera states - peculiar partial synchronization patterns in networks. Providing an overview of the state of the art in research on this topic, it explores how these hybrid states, which are composed of spatially separated domains of synchronized and desynchronized behavior, arise surprisingly in networks of identical units and symmetric coupling topologies. The book not only describes various types of chimeras, but also discusses the role of time delay, stochasticity, and network topology for these synchronization-desynchronization patterns. Moreover, it addresses the question of robustness and control of chimera states, which have various applications in physics, biology, chemistry, and engineering. This book is intended for researchers with a background in physics, applied mathematics, or engineering. Of great interest to specialists working on related problems, it is also a valuable resource for newcomers to the field and other scientists working on the control of spatio-temporal patterns.
This book describes the theory of how processes on the unobservable molecular scale give rise to observable effects such as diffusion and electrical noise on the macroscopic or laboratory scale. It puts the modern theory into historical context, and features new applications, statistical mechanics derivations, and the mathematical background of the topic.
This book collects lecture courses and seminars given at the Les Houches Summer School 2010 on "Quantum Theory: From Small to Large Scales." Fundamental quantum phenomena appear on all scales, from microscopic to macroscopic. Some of the pertinent questions include the onset of decoherence, the dynamics of collective modes, the influence of external randomness and the emergence of dissipative behaviour. Our understanding of such phenomena has been advanced by the study of model systems and by the derivation and analysis of effective dynamics for large systems and over long times. In this field, research in mathematical physics has regularly contributed results that were recognized as essential in the physics community. During the last few years, the key questions have been sharpened and progress on answering them has been particularly strong. This book reviews the state-of-the-art developments in this field and provides the necessary background for future studies. All chapters are written from a pedagogical perspective, making the book accessible to master and PhD students and researchers willing to enter this field.
Statistical Physics (SP) has followed an unusual evolutionary path in science. Originally aiming to provide a fundamental basis for another important branch of Physics, namely Thermodynamics, SP gradually became an independent field of research in its own right. But despite more than a century of steady progress, there are still plenty of challenges and open questions in the SP realm.In fact, the area is still rapidly evolving, in contrast to other branches of science, which already have well defined scopes and borderlines of applicability. This difference is due to the steadily expanding number of applications, as well as ongoing improvements and revisions of concepts and methods in SP. Such particular aspects of SP lend further significance and timeliness to this book about perspectives and trends within the field.Here, the aim is to present the state-of-the-art vision of expert researchers who study SP and Complex Systems. Although a comprehensive treatment is well beyond what can be treated in a single volume, the book provides a snapshot of the field today, as well as a glimpse of where the field may be heading during the next decade.The book is aimed at graduate and advanced undergraduate physics students, as well as researchers who work with SP, Complex Systems, Computational Physics, Biological Physics and related topics. It addresses questions such as: What insights can be gained from recent advances in the study of traditional problems in SP? How can SP help us understand problems that arise in the biological sciences and in the study of complex systems? How can new problems be formulated using the 'language' of SP? In this way, it attempts to document partial progress in answering these and related questions.The book also commemorates the occasion of the 70th anniversary in 2011 of two important physicists and friends who dedicated their lives to the understanding of nature in general and to the development of Statistical Physics and the science of Complexity in particular: Liacir Lucena and H Eugene Stanley.
This book introduces a refreshing approach to twenty-first-century scientific approach in an age, which is also known as the Century of Complexity. It deals with the deep problem of complexity, being operative from the bottom-up. The current lack of understanding of complexity has led scholars into the so-called embarrassment of complexity. A long overdue paradigm shift is necessary to address complexity as generative complexity and brings readers to the edge of a scientific revolution: that is, a generative revolution in the Century of Complexity. The book offers a radical shift of paradigm from the paradigm of simplifying into the new generative paradigm of complexifying about processes that develop from the bottom-up. The book links complex generative reality with a corresponding radical new generative nature of order and explores new fronts in science. This book explores innovative concepts of interaction, of causality, of the unit of study, and of reality itself and enables readers to see complexity as generative, emergent complexity as being operative from the bottom-up. The book discusses and suggests solutions for the problem of complexity in this Century of Complexity. The author provides a new understanding of complexity based on a generative flux of forces and relations. The book aims to bring about a fundamental and foundational change in how we view and 'do' science for an interdisciplinary audience of academics ranging from social science and humanities to economy and biology.
In the 1970s F. Calogero and D. Sutherland discovered that for certain potentials in one-dimensional systems, but for any number of particles, the Schrödinger eigenvalue problem is exactly solvable. Until then, there was only one known nontrivial example of an exactly solvable quantum multi-particle problem. J. Moser subsequently showed that the classical counterparts to these models is also amenable to an exact analytical approach. The last decade has witnessed a true explosion of activities involving Calogero-Moser-Sutherland models, and these now play a role in research areas ranging from theoretical physics (such as soliton theory, quantum field theory, string theory, solvable models of statistical mechanics, condensed matter physics, and quantum chaos) to pure mathematics (such as representation theory, harmonic analysis, theory of special functions, combinatorics of symmetric functions, dynamical systems, random matrix theory, and complex geometry). The aim of this volume is to provide an overview of the many branches into which research on CMS systems has diversified in recent years. The contributions are by leading researchers from various disciplines in whose work CMS systems appear, either as the topic of investigation itself or as a tool for further applications.
This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions: the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reactions and moving systems. The book covers the close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet.
A fascinating investigation into the foundations of statistical
inference |
You may like...
A Comprehensive Guide to Information…
Rajkumar Banoth, Gugulothu Narsimha, …
Hardcover
R3,646
Discovery Miles 36 460
Hybrid Intelligent Systems for…
Anuradha D. Thakare, Shilpa Laddha, …
Hardcover
R4,000
Discovery Miles 40 000
Industry 4.0 and Climate Change
Rajeev Agrawal, J. Paulo Davim, …
Hardcover
R4,006
Discovery Miles 40 060
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Pandemic Detection and Analysis Through…
Ram Shringar Raw, Vishal Jain, …
Hardcover
R3,636
Discovery Miles 36 360
Computer Applications in Engineering and…
Parveen Berwal, Jagjit Singh Dhatterwal, …
Hardcover
R4,845
Discovery Miles 48 450
Handbook of Data Science with Semantic…
Archana Patel, Narayan C Debnath
Hardcover
R10,299
Discovery Miles 102 990
|