![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
"The career structure and funding of the universities [...] currently strongly d- courages academics and faculties from putting any investment into teaching - there are no career or ?nancial rewards in it. This is a great pity, because [...] it is the need toengage indialogue,and to makethings logicaland clear,that istheprimary defence against obscurantism and abstraction. " B. Ward-Perkins, The fall of Rome, Oxford (2005) This is the ?rst volume of a planned two-volume treatise on non-equilibrium phase transitions. While such a topic might sound rather special and a- demic, non-equilibrium critical phenomena occur in much wider contexts than their equilibrium counterparts, and without having to ?ne-tune th- modynamic variables to their 'critical' values in each case. As a matter of fact, most systems in Nature are out of equilibrium. Given that the theme of non-equilibrium phase transitions of second order is wide enough to amount essentially to a treatment of almost all theoretical aspects of non-equilibrium many-body physics, a selection of topics is required to keep such a project within a manageable length. Therefore, Vol. 1 discusses a particular kind of non-equilibrium phase transitions, namely those between an active, ?- tuating state and absorbing states. Volume 2 (to be written by one of us (MH) with M. Pleimling) will be devoted to ageing phenomena.
Communication-Protocol-Based Filtering and Control of Networked Systems is a self-contained treatment of the state of the art in communication-protocol-based filtering and control; recent advances in networked systems; and the potential for application in sensor networks. This book provides new concepts, new models and new methodologies with practical significance in control engineering and signal processing. The book first establishes signal-transmission models subject to different communication protocols and then develops new filter design techniques based on those models and preset requirements for filtering performance. The authors then extend this work to finite-horizon H-infinity control, ultimately bounded control and finite-horizon consensus control. The focus throughout is on three typical communications protocols: the round-robin, random-access and try-once-and-discard protocols, and the systems studied are drawn from a variety of classes, among them nonlinear systems, time-delayed and time-varying systems, multi-agent systems and complex networks. Readers are shown the latest techniques-recursive linear matrix inequalities, backward recursive difference equations, stochastic analysis and mapping methods. The unified framework for communication-protocol-based filtering and control for different networked systems established in the book will be of interest to academic researchers and practicing engineers working with communications and other signal-processing systems. Senior undergraduate and graduate students looking to increase their knowledge of current methods in control and signal processing of networked systems will also find this book valuable.
This thoroughly revised 5th edition of Zeh's classic text investigates irreversible phenomena and their foundation in classical, quantum and cosmological settings. It includes new sections on the meaning of probabilities in a cosmological context, irreversible aspects of quantum computers, and various consequences of the expansion of the Universe. In particular, the book offers an analysis of the physical concept of time.
This authoritative text offers a complete overview on the statistical mechanics and electrodynamics of physical processes in dense plasma systems. The author emphasizes laboratory-based experiments and astrophysical observations of plasma phenomena, elucidated through the fundamentals. The coverage encompasses relevant condensed matter physics, atomic physics, nuclear physics, and astrophysics, including such key topics as phase transitions, transport, optical and nuclear processes. This essential resource also addresses exciting, cutting edge topics in the field, including metallic hydrogen, stellar and planetary magnetisms, pycnonuclear reactions, and gravitational waves. Scientists, researchers, and students in plasma physics, condensed matter physics, materials science, atomic physics, nuclear physics, and astrophysics will benefit from this work. Setsuo Ichimaru is a distinguished professor at the University of Tokyo, and has been a visiting member at The Institute for Advanced Study in Princeton, New Jersey, at the University of California, San Diego (UCSD), the Institute for Theoretical Physics at Johannes Kepler University, and the Max Planck Institute for Quantum Optics. He is a recipient of the Subramanyan Chandrasekhar Prize of Plasma Physics from the Association of Asia-Pacific Physical Societies and the Humboldt Research Award from the Alexander von Humboldt Foundation.
In recent years, the study of neutron stars and black holes has become increasingly important, and rigorous mathematical analysis needs to be applied in order to understand their basic physics. This book treats the classical problem of gravitational physics within Einstein's theory of general relativity. It presents basic principles and equations needed to describe rotating fluid bodies, as well as black holes in equilibrium. It then goes on to deal with a number of analytically tractable limiting cases, placing particular emphasis on the rigidly rotating disc of dust. The book concludes by considering the general case using powerful numerical methods that are applied to various models, including the classical example of equilibrium figures of constant density. Researchers in general relativity, mathematical physics, and astrophysics will find this a valuable reference book on the topic. A related website containing codes for calculating various figures of equilibrium is available at www.cambridge.org/9780521863834.
This authoritative text offers a complete overview on the statistical mechanics and electrodynamics of physical processes in dense plasma systems. The author emphasizes laboratory-based experiments and astrophysical observations of plasma phenomena, elucidated through the fundamentals. The coverage encompasses relevant condensed matter physics, atomic physics, nuclear physics, and astrophysics, including such key topics as phase transitions, transport, optical and nuclear processes. This essential resource also addresses exciting, cutting edge topics in the field, including metallic hydrogen, stellar and planetary magnetisms, pycnonuclear reactions, and gravitational waves. Scientists, researchers, and students in plasma physics, condensed matter physics, materials science, atomic physics, nuclear physics, and astrophysics will benefit from this work. Setsuo Ichimaru is a distinguished professor at the University of Tokyo, and has been a visiting member at The Institute for Advanced Study in Princeton, New Jersey, at the University of California, San Diego (UCSD), the Institute for Theoretical Physics at Johannes Kepler University, and the Max Planck Institute for Quantum Optics. He is a recipient of the Subramanyan Chandrasekhar Prize of Plasma Physics from the Association of Asia-Pacific Physical Societies and the Humboldt Research Award from the Alexander von Humboldt Foundation.
Finite element methods have become ever more important to engineers as tools for design and optimization, now even for solving non-linear technological problems. However, several aspects must be considered for finite-element simulations which are specific for non-linear problems: These problems require the knowledge and the understanding of theoretical foundations and their finite-element discretization as well as algorithms for solving the non-linear equations. This book provides the reader with the required knowledge covering the complete field of finite element analyses in solid mechanics. It is written for advanced students in engineering fields but serves also as an introduction into non-linear simulation for the practising engineer.
Random walks often provide the underlying mesoscopic mechanism for transport phenomena in physics, chemistry and biology. In particular, anomalous transport in branched structures has attracted considerable attention. Combs are simple caricatures of various types of natural branched structures that belong to the category of loopless graphs. The comb model was introduced to understand anomalous transport in percolation clusters. Comb-like models have been widely adopted to describe kinetic processes in various experimental applications in medical physics and biophysics, chemistry of polymers, semiconductors, and many other interdisciplinary applications.The authors present a random walk description of the transport in specific comb geometries, ranging from simple random walks on comb structures, which provide a geometrical explanation of anomalous diffusion, to more complex types of random walks, such as non-Markovian continuous-time random walks. The simplicity of comb models allows to perform a rigorous analysis and to obtain exact analytical results for various types of random walks and reaction-transport processes.
Time asymmetric phenomena are successfully predicted by statistical mechanics. Yet the foundations of this theory are surprisingly shaky. Its explanation for the ease of mixing milk with coffee is incomplete, and even implies that un-mixing them should be just as easy. In this book the authors develop a new conceptual foundation for statistical mechanics that addresses this difficulty. Explaining the notions of macrostates, probability, measurement, memory, and the arrow of time in statistical mechanics, they reach the startling conclusion that Maxwell's Demon, the famous perpetuum mobile, is consistent with the fundamental physical laws. Mathematical treatments are avoided where possible, and instead the authors use novel diagrams to illustrate the text. This is a fascinating book for graduate students and researchers interested in the foundations and philosophy of physics.
Disordered magnetic systems enjoy non-trivial properties which are different and richer than those observed in their pure, non-disordered counterparts. These properties dramatically affect the thermodynamic behaviour and require specific theoretical treatment. This 2006 book deals with the theory of magnetic systems in the presence of frozen disorder, in particular paradigmatic and well-known spin models such as the Random Field Ising Model and the Ising Spin Glass. This is a unified presentation using a field theory language which covers mean field theory, dynamics and perturbation expansion within the same theoretical framework. Particular emphasis is given to the connections between different approaches such as statics vs. dynamics, microscopic vs. phenomenological models. The book introduces some useful and little-known techniques in statistical mechanics and field theory. This book will be of great interest to graduate students and researchers in statistical physics and basic field theory.
This book covers the broad subject of equilibrium statistical mechanics along with many advanced and modern topics such as nucleation, spinodal decomposition, inherent structures of liquids and liquid crystals. Unlike other books on the market, this comprehensive text not only deals with the primary fundamental ideas of statistical mechanics but also covers contemporary topics in this broad and rapidly developing area of chemistry and materials science.
This book presents recent results of basic research in the field of Raman scattering by optic and acoustic phonons in semiconductors, quantum wells and superlattices. It also describes various new applications for analytical materials research which have emerged alongside with scientific progress. Trends in Raman techniques and instrumentation and their implications for future developments are illustrated.
Der Grundkurs Theoretische Physik deckt in 7 Banden alle fur das Diplom und fur Bachelor/Master-Studiengange massgeblichen Gebiete ab. Jeder Band vermittelt das im jeweiligen Semester notwendige theoretisch-physikalische Rustzeug. UEbungsaufgaben mit ausfuhrlichen Loesungen dienen der Vertiefung des Stoffs. Der 6. Band zur Statistischen Physik wurde fur die Neuauflage grundlegend uberarbeitet und um aktuelle Entwicklungen erganzt. Durch die zweifarbige Gestaltung ist der Stoff jetzt noch ubersichtlicher gegliedert.
This invaluable book provides a broad introduction to a rapidly growing area of nonequilibrium statistical physics. The first part of the book complements the classical book on the Langevin and Fokker-Planck equations (H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, 1996)). Some topics and methods of solutions are presented and discussed in details which are not described in Risken's book, such as the method of similarity solution, the method of characteristics, transformation of diffusion processes into the Wiener process in different prescriptions, harmonic noise and relativistic Brownian motion. Connection between the Langevin equation and Tsallis distribution is also discussed.Due to the growing interest in the research on the generalized Langevin equations, several of them are presented. They are described with some details.Recent research on the integro-differential Fokker-Planck equation derived from the continuous time random walk model shows that the topic has several aspects to be explored. This equation is worked analytically for the linear force and the generic waiting time probability distribution function. Moreover, generalized Klein-Kramers equations are also presented and discussed. They have the potential to be applied to natural systems, such as biological systems.
This text presents an introduction to the field of statistical physics of macromolecules, from the basic concepts to modern achievements. Applications in various fields of polymer physical chemistry and molecular biophysics are also covered, as are: the fundamentals of statistical theory of polymer solutions and melts; classical, sealing and renormalization group approaches; the main ideas of statistical theories of polymer liquid crystals, polymer networks and polyelectrolytes; dynamic viscoelastic behavior of polymer systems; models of house, Zimm and reptation concepts; and specific features of main biopolymers - DNA and proteins. This English edition also includes sections describing the most important recent advances such as: statistical theory of DNA gel-electrophoresis, polymers at interfaces, and dynamics of concentrated solutions of rigid polymers.
This book is the fifth volume of papers on advanced problems of phase transitions and critical phenomena, the first four volumes appeared in 2004, 2007, 2012, and 2015. It aims to compile reviews in those aspects of criticality and related subjects that are of current interest. The seven chapters discuss criticality of complex systems, where the new, emergent properties appear via collective behaviour of simple elements. Since all complex systems involve cooperative behaviour between many interconnected components, the field of phase transitions and critical phenomena provides a very natural conceptual and methodological framework for their study.As the first four volumes, this book is based on the review lectures that were given in Lviv (Ukraine) at the 'Ising lectures' - a traditional annual workshop on phase transitions and critical phenomena which aims to bring together scientists working in the field of phase transitions with university students and those who are interested in the subject.
Flocks of birds, schools of fish and swarms of locusts display amazing forms of collective motion, while huge numbers of glow worms can emit light signals with almost unbelievable synchronization. These and many other collective phenomena in animal societies take place according to laws very similar to those governing the collective behavior in the inanimate nature, such as the magnetization of iron and the light radiation of lasers. During recent years, this has led to the study of swarm behavior as a challenging new field of science, in which ideas from the physical world are applied in order to understand the formation and structure of animal swarms. From these studies, it has become clear that such collective behavior of animals emerges in a self-organized way, without any need of overall coordination. In this book, we present different swarm phenomena of the animal world and compare them to their counterparts in physics, in a conceptual and non-technical way, addressed to a general readership.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Application of New Cybernetics in Physics describes the application of new cybernetics to physical problems and the resolution of basic physical paradoxes by considering external observer influence. This aids the reader in solving problems that were solved incorrectly or have not been solved. Three groups of problems of the new cybernetics are considered in the book: (a) Systems that can be calculated based on known physics of subsystems. This includes the external observer influence calculated from basic physical laws (ideal dynamics) and dynamics of a physical system influenced even by low noise (observable dynamics). (b) Emergent systems. This includes external noise from the observer by using the black box model (complex dynamics), external noise from the observer by using the observer's intuition (unpredictable dynamics), defining boundaries of application of scientific methods for system behavior prediction, and the role of the observer's intuition for unpredictable systems. (c) Methods for solution of basic physical paradoxes by using methods of the new cybernetics: the entropy increase paradox, Schroedinger's cat paradox (wave package reduction in quantum mechanics), the black holes information paradox, and the time wormholes grandfather paradox. All of the above paradoxes have the same resolution based on the principles of new cybernetics. Indeed, even a small interaction of an observer with an observed system results in their time arrows' alignment (synchronization) and results in the paradox resolution and appearance of the universal time arrow.
This book is the distilled essence of the author teaching statistical mechanics to juniors, seniors and graduate students for over 50 years in various course settings. It uses a unique approach that leads naturally into the development of all possible ensembles. Much of the later chapters on polymers has previously been available only in the literature. Throughout the book, the assumption is made that the reader is still relatively raw, and mathematical detail is provided that other books leave to the abilities of the reader. While this produces a plethora of equations that mature scientists would regard as unnecessary, it is intended to help those just coming into the field and who want to get the idea without suffering hours of agony wondering, 'where did that come from?'.
This book is the distilled essence of the author teaching statistical mechanics to juniors, seniors and graduate students for over 50 years in various course settings. It uses a unique approach that leads naturally into the development of all possible ensembles. Much of the later chapters on polymers has previously been available only in the literature. Throughout the book, the assumption is made that the reader is still relatively raw, and mathematical detail is provided that other books leave to the abilities of the reader. While this produces a plethora of equations that mature scientists would regard as unnecessary, it is intended to help those just coming into the field and who want to get the idea without suffering hours of agony wondering, 'where did that come from?'.
In this new textbook, a number of unusual applications are discussed in addition to the usual topics covered in a course on Statistical Physics. Examples are: statistical mechanics of powders, Peierls instability, graphene, Bose-Einstein condensates in a trap, Casimir effect and the quantum Hall effect. Superfluidity and super-conductivity (including the physics of high-temperature superconductors) have also been discussed extensively.The emphasis on the treatment of these topics is pedagogic, introducing the basic tenets of statistical mechanics, with extensive and thorough discussion of the postulates, ensembles, and the relevant statistics. Many standard examples illustrate the microcanonical, canonical and grand canonical ensembles, as well as the Bose-Einstein and Fermi-Dirac statistics.A special feature of this text is the detailed presentation of the theory of second-order phase transitions and the renormalization group, emphasizing the role of disorder. Non-equilibrium statistical physics is introduced via the Boltzmann transport equation. Additional topics covered here include metastability, glassy systems, the Langevin equation, Brownian motion, and the Fokker-Planck equation.Graduate students will find the presentation readily accessible, since the topics have been treated with great deal of care and attention to detail.
With a foreword by Freeman Dyson, the handbook brings together
leading mathematicians and physicists to offer a comprehensive
overview of random matrix theory, including a guide to new
developments and the diverse range of applications of this
approach.
This book is a compilation of selected reviews by Professor Michael E Fisher. Fisher's major contributions to physics have been in equilibrium statistical mechanics, and have spanned the entire range of that subject. He has been credited with bringing together, and teaching a common language to chemists and physicists working on diverse problems of phase transitions.About the Book by the AuthorTalking informally in a clear way came naturally once intrigued by a field of science; that helped me accept the invitation to publish a collection of review articles. And working actively in an area has led me to express what is new in basic terms, with lots of figures framed, typically, via two- or three-dimensional images. Also encouraging was that my reviews - with crucial references - were recognized in 1983 by the U.S. National Academy of Sciences through their James Murray Luck Award for 'excellence in scientific reviewing.'However, the first article in this collection is by my postdoctoral mentor, Cyril Domb, whose inaugural lecture at King's College London was entitled: 'Statistical Physics and its Problems.' This provides readers with a context for some of the topics later reviewed in greater depth. Among the aspects then explained, are the various critical exponents: , , , and - the special exponents and for the correlation functions, and the scaling relations. Phase diagrams are examined thoroughly along with tricritical and bicritical points, Kosterlitz-Thouless points, protocriticality, etc. Random walks along with vicious walkers and their reunions are introduced. Biophysics is touched upon. The final article: 'Statistical Physics in the Oeuvre of Chen Ning Yang,' stems from the 2015 Conference on 60 Years of Yang-Mills Gauge Field Theories.In conclusion, it is hoped that a wide range of readers (and some experts also!) will enjoy dipping into the variety of reviews collected here. |
![]() ![]() You may like...
Passivity of Complex Dynamical Networks…
Jinliang Wang, Huai-Ning Wu, …
Hardcover
R4,138
Discovery Miles 41 380
Understanding Innovation Through…
Caterina A. M. La Porta, Stefano Zapperi, …
Hardcover
R2,931
Discovery Miles 29 310
Quantum Signatures of Chaos
Fritz Haake, Sven Gnutzmann, …
Hardcover
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,865
Discovery Miles 18 650
|