![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
This book presents a selection of advanced lectures from leading researchers, providing recent theoretical results on strongly coupled quantum field theories. It also analyzes their use for describing new quantum states, which are physically realizable in condensed matter, cold-atomic systems, as well as artificial materials. It particularly focuses on the engineering of these states in quantum devices and novel materials useful for quantum information processing. The book offers graduate students and young researchers in the field of modern condensed matter theory an updated review of the most relevant theoretical methods used in strongly coupled field theory and string theory. It also provides the tools for understanding their relevance in describing the emergence of new quantum states in a variety of physical settings. Specifically, this proceedings book summarizes new and previously unrelated developments in modern condensed matter physics, in particular: the interface of condensed matter theory and quantum information theory; the interface of condensed matter physics and the mathematics emerging from the classification of the topological phases of matter, such as topological insulators and topological superconductors; and the simulation of condensed matter systems with cold atoms in optical lattices.
This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.
Over 130 years ago, James Clerk Maxwell introduced his hypothetical "demon" as a challenge to the scope of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science, and links have been established between Maxwell's demon and each of these disciplines. The demon's seductive quality makes it appealing to physical scientists, engineers, computer scientists, biologists, psychologists, and historians and philosophers of science. Since the publication of Maxwell's Demon: Entropy, Information, Computing in 1990, Maxwell's demon has been the subject of renewed and increased interest by numerous researchers in the fields mentioned above. Updated and expanded, Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing retains many of the seminal papers that appeared in the first edition, including the original thoughts of James Clerk Maxwell and William Thomson; a historical review by Martin Klein; and key articles by Leo Szilard, Leon Brillouin, Rolf Landauer, and Charles Bennett that led to new branches of research on the demon. This second edition contains newer articles by Landauer, Bennett, and others, related to Landauer's principle; connections with quantum mechanics; algorithmic information; and the thermodynamics and limits of computation. The book also includes two separate bibliographies: an alphabetical listing by author and a chronological bibliography that is annotated by the editors and contains selected quotes from the books and articles listed. The bibliography has more than doubled in size since publication of the first edition and now contains over 570 entries.
Written in the 1980s by one of the fathers of chaos theory, Otto E. Roessler, the manuscript presented in this volume eventually never got published. Almost 40 years later, it remains astonishingly at the forefront of knowledge about chaos theory and many of the examples discussed have never been published elsewhere. The manuscript has now been edited by Christophe Letellier - involved in chaos theory for almost three decades himself, as well as being active in the history of sciences - with a minimum of changes to the original text. Finally released for the benefit of specialists and non-specialists alike, this book is equally interesting from the historical and the scientific points of view: an unconventionally modern approach to chaos theory, it can be read as a classic introduction and short monograph as well as a collection of original insights into advanced topics from this field.
Bringing together the key ideas from nonequilibrium statistical mechanics and powerful methodology from quantum field theory, this book captures the essence of nonequilibrium quantum field theory. Beginning with the foundational aspects of the theory, the book presents important concepts and useful techniques, discusses issues of basic interest, and shows how thermal field, linear response, kinetic theories and hydrodynamics emerge. It also illustrates how these concepts and methodology are applied to current research topics including nonequilibrium phase transitions, thermalization in relativistic heavy ion collisions, the nonequilibrium dynamics of Bose-Einstein condensation, and the generation of structures from quantum fluctuations in the early Universe. Divided into five parts, with each part addressing a particular stage in the conceptual and technical development of the subject, this self-contained book is a valuable reference for graduate students and researchers in particle physics, gravitation, cosmology, atomic-optical and condensed matter physics.
This edited volume collects six surveys that present state-of-the-art results on modeling, qualitative analysis, and simulation of active matter, focusing on specific applications in the natural sciences. Following the previously published Active Particles volumes, these chapters are written by leading experts in the field and reflect the diversity of subject matter in theory and applications within an interdisciplinary framework. Topics covered include: Variability and heterogeneity in natural swarms Multiscale aspects of the dynamics of human crowds Mathematical modeling of cell collective motion triggered by self-generated gradients Clustering dynamics on graphs Random Batch Methods for classical and quantum interacting particle systems The consensus-based global optimization algorithm and its recent variants Mathematicians and other members of the scientific community interested in active matter and its many applications will find this volume to be a timely, authoritative, and valuable resource.
Potts Models and Related Problems in Statistical Mechanics
The material for these volumes has been selected from the past twenty years' examination questions for graduate students at University of California at Berkeley, Columbia University, the University of Chicago, MIT, State University of New York at Buffalo, Princeton University and University of Wisconsin.
The material for these volumes has been selected from the past twenty years' examination questions for graduate students at University of California at Berkeley, Columbia University, the University of Chicago, MIT, State University of New York at Buffalo, Princeton University and University of Wisconsin.
This book is intended as a supplementary text to the standard course books on theoretical physics and astrophysics, addressing applications and selected problems in theoretical physics and astrophysics, most of which are to a greater or lesser extent associated with electrodynamics.
This book includes seminal papers on technical subjects-transport theory, invariant imbedding, and integral equations-presented as contributions to honour George Milt Wing in celebration of his 65th birth anniversary in 1988.
Physics underlies all complexity, including our own existence: how is this possible? How can our own lives emerge from interactions of electrons, protons, and neutrons? This book considers the interaction of physical and non-physical causation in complex systems such as living beings, and in particular in the human brain, relating this to the emergence of higher levels of complexity with real causal powers. In particular it explores the idea of top-down causation, which is the key effect allowing the emergence of true complexity and also enables the causal efficacy of non-physical entities, including the value of money, social conventions, and ethical choices.
This book presents the state of the art in social simulation as presented at the Social Simulation Conference 2019 in Mainz, Germany. It covers the developments in applications and methods of social simulation, addressing societal issues such as socio-ecological systems and policymaking. Methodological issues discussed include large-scale empirical calibration, model sharing and interdisciplinary research, as well as decision-making models, validation and the use of qualitative data in simulation modeling. Research areas covered include archaeology, cognitive science, economics, organization science and social simulation education. This book gives readers insight into the increasing use of social simulation in both its theoretical development and in practical applications such as policymaking whereby modeling and the behavior of complex systems is key. The book appeals to students, researchers and professionals in the various fields.
The dielectric properties especially of glassy materials are nowadays explored at widely varying temperatures and pressures without any gap in the spectral range from Hz up to the Infrared, thus covering typically 20 decades or more. This extraordinary span enables to trace the scaling and the mutual interactions of relaxation processes in detail, e.g. the dynamic glass transition and secondary relaxations, but as well far infrared vibrations, like the Boson peak. Additionally the evolution of intra-molecular interactions in the course of the dynamic glass transition is also well explored by (Fourier Transform) Infrared Spectroscopy. This volume within 'Advances in Dielectrics' summarizes this knowledge and discusses it with respect to the existing and often competing theoretical concepts.
This book presents a new approach to learning the dynamics of particles and rigid bodies at an intermediate to advanced level. There are three distinguishing features of this approach. First, the primary emphasis is to obtain the equations of motion of dynamical systems and to solve them numerically. As a consequence, most of the analytical exercises and homework found in traditional dynamics texts written at this level are replaced by MATLAB (R)-based simulations. Second, extensive use is made of matrices. Matrices are essential to define the important role that constraints have on the behavior of dynamical systems. Matrices are also key elements in many of the software tools that engineers use to solve more complex and practical dynamics problems, such as in the multi-body codes used for analyzing mechanical, aerospace, and biomechanics systems. The third and feature is the use of a combination of Newton-Euler and Lagrangian (analytical mechanics) treatments for solving dynamics problems. Rather than discussing these two treatments separately, Engineering Dynamics 2.0 uses a geometrical approach that ties these two treatments together, leading to a more transparent description of difficult concepts such as "virtual" displacements. Some important highlights of the book include: Extensive discussion of the role of constraints in formulating and solving dynamics problems. Implementation of a highly unified approach to dynamics in a simple context suitable for a second-level course. Descriptions of non-linear phenomena such as parametric resonances and chaotic behavior. A treatment of both dynamic and static stability. Overviews of the numerical methods (ordinary differential equation solvers, Newton-Raphson method) needed to solve dynamics problems. An introduction to the dynamics of deformable bodies and the use of finite difference and finite element methods. Engineering Dynamics 2.0 provides a unique, modern treatment of dynamics problems that is directly useful in advanced engineering applications. It is a valuable resource for undergraduate and graduate students and for practicing engineers.
This thesis make significant contributions to both the numerical and analytical aspects of particle physics, reducing the noise associated with matrix calculations in quantum chromodynamics (QCD) and modeling multi-quark mesonic matters that could be used to investigate particles previously unseen in nature. Several methods are developed that can reduce the statistical uncertainty in the extraction of hard-to-detect lattice QCD signals from disconnected diagrams. The most promising technique beats competing methods by 1700 percent, leading to a potential decrease in the computation time of quark loop quantities by an order of magnitude. This not only increases efficiency but also works for QCD matrices with almost-zero eigenvalues, a region where most QCD algorithms break down. This thesis also develops analytical solutions used to investigate exotic particles, specifically the Thomas-Fermi quark model, giving insight into possible new states formed from mesonic matter. The main benefit of this model is that it can work for a large number of quarks which is currently almost impossible with lattice QCD. Patterns of single-quark energies are observed which give the first a priori indication that stable octa-quark and hexadeca-quark versions of the charmed and bottom Z-meson exist.
This book is the productof my research at the EndowedChair of Corporate Finance and Capital Markets at the European Business School. Many people devoted their inspiration, time, and knowledge in order to support me with my interdisciplinary research. Thank you all for your support. Especially, I thank my academic supervisor Prof. Ulrich Hommel, Ph.D., who provided me with the freedom to pursue my research interests and who always s- ported me generously. In addition, I am very grateful to my co-supervisor Prof. Dr. Susanne Strahringer (TU Dresden), who graciously accepted the task of refer- ing my book. Also, I thank Prof. Dr. Matthias Krause of the Chair for Theoretical Computer Science in Mannheim for the technical and computer scienti?c support. During my research visits I received generous support from Prof. Yaneer Bar- Yam (NECSI and Harvard) and Prof. John D. Sterman (MIT), who introduced me to the ?eld of System Dynamics and Complex Systems, as well as from Prof. Victor Mossotti (U.S. Geological Survey), Prof. Hiroki Sayama (NECSI and Bingh- ton), Prof. Markus de Aguiar (Universidade Estadual de Campinas), Prof. Michel Baranger (MIT), Prof. Jay W. Forrester (MIT), and Prof. Brian D. Josephson (Cambridge). Thank you very much for numerous inspiring discussions.
Humans engage in a seemingly endless variety of different behaviors, of which some are found across species, while others are conceived of as typically human. Most generally, behavior comes about through the interplay of various constraints - informational, mechanical, neural, metabolic, and so on - operating at multiple scales in space and time. Over the years, consensus has grown in the research community that, rather than investigating behavior only from bottom up, it may be also well understood in terms of concepts and laws on the phenomenological level. Such top down approach is rooted in theories of synergetics and self-organization using tools from nonlinear dynamics. The present compendium brings together scientists from all over the world that have contributed to the development of their respective fields departing from this background. It provides an introduction to deterministic as well as stochastic dynamical systems and contains applications to motor control and coordination, visual perception and illusion, as well as auditory perception in the context of speech and music.
The European Conference on Complex Systems, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. ECCS'12, its ninth edition, took place in Brussels, during the first week of September 2012. It gathered about 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. More specifically, the following tracks were covered: 1. Foundations of Complex Systems 2. Complexity, Information and Computation 3. Prediction, Policy and Planning, Environment 4. Biological Complexity 5. Interacting Populations, Collective Behavior 6. Social Systems, Economics and Finance This book contains a selection of the contributions presented at the conference and its satellite meetings. Its contents reflect the extent, diversity and richness of research areas in the field, both fundamental and applied. "
This book contains a selection of the latest research in the field of Computational Social Science (CSS) methods, uses, and results, as presented at the 2018 annual conference of the CSSSA. This conference was held in Santa Fe, New Mexico, October 25 - 28, 2018, at the Drury Plaza Hotel. CSS investigates social and behavioral dynamics in both nature and society, through computer simulation, network analysis, and the science of complex systems. The Computational Social Science Society of the Americas (CSSSA) is a professional society that aims to advance the field of CSS in all its areas, from fundamental principles to real-world applications, by holding conferences and workshops, promoting standards of scientific excellence in research and teaching, and publishing novel research findings. What follows is a diverse representation of new approaches and research findings, using the tools of CSS and Agent-Based Modeling (ABM) in exploring complex phenomena across many different domains. Readers will not only have the methods and results of these specific projects on which to build, but will also gain a greater appreciation for the broad scope of CSS, and have a wealth of case-study examples that can serve as meaningful exemplars for new research projects and activities. This book, we hope, will appeal to any researchers and students working in the social sciences, broadly defined, who aim to better understand and apply the concepts of Complex Adaptive Systems to their work.
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos-control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity - chaos - corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman's sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
This book develops analytical methods for studying the dynamical chaos, synchronization, and dynamics of structures in various models of coupled rotators. Rotators and their systems are defined in a cylindrical phase space, and, unlike oscillators, which are defined in Rn, they have a wider "range" of motion: There are vibrational and rotational types for cyclic variables, as well as their combinations (rotational-vibrational) if the number of cyclic variables is more than one. The specificity of rotator phase space poses serious challenges in terms of selecting methods for studying the dynamics of related systems. The book chiefly focuses on developing a modified form of the method of averaging, which can be used to study the dynamics of rotators. In general, the book uses the "language" of the qualitative theory of differential equations, point mappings, and the theory of bifurcations, which helps authors to obtain new results on dynamical chaos in systems with few degrees of freedom. In addition, a special section is devoted to the study and classification of dynamic structures that can occur in systems with a large number of interconnected objects, i.e. in lattices of rotators and/or oscillators. Given its scope and format, the book can be used both in lectures and courses on nonlinear dynamics, and in specialized courses on the development and operation of relevant systems that can be represented by a large number of various practical systems: interconnected grids of various mechanical systems, various types of networks including not only mechanical but also biological systems, etc.
This monograph discusses the essential principles of the evaporationprocess by looking at it at the molecular and atomic level. In the first part methods of statistical physics, physical kinetics andnumerical modeling are outlined including the Maxwell's distributionfunction, the Boltzmann kinetic equation, the Vlasov approach, and theCUDA technique. The distribution functions of evaporating particles are then defined.Experimental results on the evaporation coefficient and the temperaturejump on the evaporation surface are critically reviewed and compared tothe theory and numerical results presented in previous chapters. The book ends with a chapter devoted to evaporation in differentprocesses, such as boiling and cavitation.This monograph addressesgraduate students and researchers working on phase transitions andrelated fields.
The Ising model provides a detailed mathematical description of ferromagnetism and is widely used in statistical physics and condensed matter physics. In this Student's Guide, the author demystifies the mathematical framework of the Ising model and provides students with a clear understanding of both its physical significance, and how to apply it successfully in their calculations. Key topics related to the Ising model are covered, including exact solutions of both finite and infinite systems, series expansions about high and low temperatures, mean-field approximation methods, and renormalization-group calculations. The book also incorporates plots, figures, and tables to highlight the significance of the results. Designed as a supplementary resource for undergraduate and graduate students, each chapter includes a selection of exercises intended to reinforce and extend important concepts, and solutions are also available for all exercises. |
You may like...
Old Friends, New Enemies. The Royal Navy…
Arthur J. Marder, Mark Jacobsen, …
Hardcover
R5,403
Discovery Miles 54 030
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
|