![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
This book deals with the basic principles and techniques of nonequilibrium statistical mechanics. The importance of this subject is growing rapidly in view of the advances being made, both experimentally and theoretically, in statistical physics, chemical physics, biological physics, complex systems and several other areas. The presentation of topics is quite self-contained, and the choice of topics enables the student to form a coherent picture of the subject. The approach is unique in that classical mechanical formulation takes center stage. The book is of particular interest to advanced undergraduate and graduate students in engineering departments.
Presents a clear path to developing quantitative multi-phase and multi-component phase field models for solidification and other phase transformation kinetics based on practical grand potential functional Derives explicitly and discusses the quantitative nature of the model formulations through matched interface asymptotic analysis Explores a framework for quantitative treatment of rapid solidification to control solute trapping and solute drag dynamics
Thermal and statistical physics has established the principles and procedures needed to understand and explain the properties of systems consisting of macroscopically large numbers of particles. By developing microscopic statistical physics and macroscopic classical thermodynamic descriptions in tandem, Statistical and Thermal Physics: An Introduction provides insight into basic concepts and relationships at an advanced undergraduate level. This second edition is updated throughout, providing a highly detailed, profoundly thorough, and comprehensive introduction to the subject and features exercises within the text as well as end-of-chapter problems. Part I of this book consists of nine chapters, the first three of which deal with the basics of equilibrium thermodynamics, including the fundamental relation. The following three chapters introduce microstates and lead to the Boltzmann definition of the entropy using the microcanonical ensemble approach. In developing the subject, the ideal gas and the ideal spin system are introduced as models for discussion. The laws of thermodynamics are compactly stated. The final three chapters in Part I introduce the thermodynamic potentials and the Maxwell relations. Applications of thermodynamics to gases, condensed matter, and phase transitions and critical phenomena are dealt with in detail. Initial chapters in Part II present the elements of probability theory and establish the thermodynamic equivalence of the three statistical ensembles that are used in determining probabilities. The canonical and the grand canonical distributions are obtained and discussed. Chapters 12-15 are concerned with quantum distributions. By making use of the grand canonical distribution, the Fermi-Dirac and Bose-Einstein quantum distribution functions are derived and then used to explain the properties of ideal Fermi and Bose gases. The Planck distribution is introduced and applied to photons in radiation and to phonons on solids. The last five chapters cover a variety of topics: the ideal gas revisited, nonideal systems, the density matrix, reactions, and irreversible thermodynamics. A flowchart is provided to assist instructors on planning a course. Key Features: Fully updated throughout, with new content on exciting topics, including black hole thermodynamics, Heisenberg antiferromagnetic chains, entropy and information theory, renewable and nonrenewable energy sources, and the mean field theory of antiferromagnetic systems Additional problem exercises with solutions provide further learning opportunities Suitable for advanced undergraduate students in physics or applied physics. Michael J.R. Hoch spent many years as a visiting scientist at the National High Magnetic Field Laboratory at Florida State University, USA. Prior to this, he was a professor of physics and the director of the Condensed Matter Physics Research Unit at the University of the Witwatersrand, Johannesburg, where he is currently professor emeritus in the School of Physics.
The simulation of turbulent reacting flows, connected with environmental protection and the design of chemical and mechanical processes, is increasingly important. Statistical Mechanics of Turbulent Flows presents a modern overview of basic ways to calculate such flows. It discusses the fundamental problems related to the use of basic equations and their modifications. Special emphasis is placed on the discussion of very promising statistical methods which provide solutions to these problems by models for the underlying stochastic physics of turbulent reacting flows. Their foundations and important new developments up through current challenges are systematically explained. Students and researchers in atmospheric sciences and oceanography, mechanical and chemical engineering and applied mathematics and physics may use Statistical Mechanics of Turbulent Flows as a guide to solve many problems related, e.g. to the assessment of complex atmospheric chemistry, chemical reactor processes, turbulent combustion, and multi-phase flows.
This book contains selected papers of NSC08, the 2nd Conference on Nonlinear Science and Complexity, held 28-31 July, 2008, Porto, Portugal. It focuses on fundamental theories and principles, analytical and symbolic approaches, computational techniques in nonlinear physics and mathematics. Topics treated include - Chaotic Dynamics and Transport in Classic and Quantum Systems - Complexity and Nonlinearity in Molecular Dynamics and Nano-Science - Complexity and Fractals in Nonlinear Biological Physics and Social Systems - Lie Group Analysis and Applications in Nonlinear Science - Nonlinear Hydrodynamics and Turbulence - Bifurcation and Stability in Nonlinear Dynamic Systems - Nonlinear Oscillations and Control with Applications - Celestial Physics and Deep Space Exploration - Nonlinear Mechanics and Nonlinear Structural Dynamics - Non-smooth Systems and Hybrid Systems - Fractional dynamical systems
"Fundamental Aspects of Plasma Chemical Physics: Transport "develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples are provided to clarify concepts and mathematical approaches. This book is the second of a series of three published by the Bari group on fundamental aspects of plasma chemical physics. The first book, "Fundamental Aspects of Plasma Chemical Physics: Thermodynamics," is dedicated to plasma thermodynamics; and the third, "Fundamental Aspects of Plasma Chemical Physics: Kinetics," deals with plasma kinetics.
The original work by M.D. Sturge has been updated and expanded to include new chapters covering non-equilibrium and biological systems. This second edition re-organizes the material in a more natural manner into four parts that continues to assume no previous knowledge of thermodynamics. The four divisions of the material introduce the subject inductively and rigorously, beginning with key concepts of equilibrium thermodynamics such as heat, temperature and entropy. The second division focuses on the fundamentals of modern thermodynamics: free energy, chemical potential and the partition function. The second half of the book is then designed with the flexibility to meet the needs of both the instructor and the students, with a third section focused on the different types of gases: ideal, Fermi-Dirac, Bose-Einstein, Black Body Radiation and the Photon gases. In the fourth and final division of the book, modern thermostatistical applications are addressed: semiconductors, phase transitions, transport processes, and finally the new chapters on non-equilibrium and biological systems. Key Features: Provides the most readable, thorough introduction to statistical physics and thermodynamics, with magnetic, atomic, and electrical systems addressed alongside development of fundamental topics at a non-rigorous mathematical level. Includes brand-new chapters on biological and chemical systems and non-equilibrium thermodynamics, as well as extensive new examples from soft condensed matter and correction of typos from the prior edition. Incorporates new numerical and simulation exercises throughout the book. Adds more worked examples, problems, and exercises.
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image of the origin of dynamical chaos and randomness. An understanding of the origin of the randomness in dynamical systems, which cannot be of the same origin as chaos, provides new insights in the diverse fields of physics, biology, chemistry and engineering.
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3 and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarkable digital techniques current and experimental. Many results are presented in a practical way, based on both experiments and numerical simulations. The book is written for a advanced engineering students as well as postgraduate engineers and researchers. For students, it contains the essential results as well as details and demonstrations whose oral transmission is often tedious. At a more advanced level, the text provides numerous references which allow readers to find quickly further study regarding their work and to acquire a deeper knowledge on topics of interest.
This book was inspired by the general observation that the great theories of modern physics are based on simple and transparent underlying mathematical structures - a fact not usually emphasized in standard physics textbooks - which makes it easy for mathematicians to understand their basic features. It is a textbook on quantum theory intended for advanced undergraduate or graduate students: mathematics students interested in modern physics, and physics students who are interested in the mathematical background of physics and are dissatisfied with the level of rigor in standard physics courses. More generally, it offers a valuable resource for all mathematicians interested in modern physics, and all physicists looking for a higher degree of mathematical precision with regard to the basic concepts in their field.
Building on the material learned by students in their first few years of study, Topics in Statistical Mechanics (Second Edition) presents an advanced level course on statistical and thermal physics. It begins with a review of the formal structure of statistical mechanics and thermodynamics considered from a unified viewpoint. There is a brief revision of non-interacting systems, including quantum gases and a discussion of negative temperatures. Following this, emphasis is on interacting systems. First, weakly interacting systems are considered, where the interest is in seeing how small interactions cause small deviations from the non-interacting case. Second, systems are examined where interactions lead to drastic changes, namely phase transitions. A number of specific examples is given, and these are unified within the Landau theory of phase transitions. The final chapter of the book looks at non-equilibrium systems, in particular the way they evolve towards equilibrium. This is framed within the context of linear response theory. Here fluctuations play a vital role, as is formalised in the fluctuation-dissipation theorem.The second edition has been revised particularly to help students use this book for self-study. In addition, the section on non-ideal gases has been expanded, with a treatment of the hard-sphere gas, and an accessible discussion of interacting quantum gases. In many cases there are details of Mathematica calculations, including Mathematica Notebooks, and expression of some results in terms of Special Functions.
Building on the material learned by students in their first few years of study, Topics in Statistical Mechanics (Second Edition) presents an advanced level course on statistical and thermal physics. It begins with a review of the formal structure of statistical mechanics and thermodynamics considered from a unified viewpoint. There is a brief revision of non-interacting systems, including quantum gases and a discussion of negative temperatures. Following this, emphasis is on interacting systems. First, weakly interacting systems are considered, where the interest is in seeing how small interactions cause small deviations from the non-interacting case. Second, systems are examined where interactions lead to drastic changes, namely phase transitions. A number of specific examples is given, and these are unified within the Landau theory of phase transitions. The final chapter of the book looks at non-equilibrium systems, in particular the way they evolve towards equilibrium. This is framed within the context of linear response theory. Here fluctuations play a vital role, as is formalised in the fluctuation-dissipation theorem.The second edition has been revised particularly to help students use this book for self-study. In addition, the section on non-ideal gases has been expanded, with a treatment of the hard-sphere gas, and an accessible discussion of interacting quantum gases. In many cases there are details of Mathematica calculations, including Mathematica Notebooks, and expression of some results in terms of Special Functions.
Adding one and one makes two, usually. But sometimes things add up to more than the sum of their parts. This observation, now frequently expressed in the maxim "more is different", is one of the characteristic features of complex systems and, in particular, complex networks. Along with their ubiquity in real world systems, the ability of networks to exhibit emergent dynamics, once they reach a certain size, has rendered them highly attractive targets for research. The resulting network hype has made the word "network" one of the most in uential buzzwords seen in almost every corner of science, from physics and biology to economy and social sciences. The theme of "more is different" appears in a different way in the present v- ume, from the viewpoint of what we call "adaptive networks." Adaptive networks uniquely combine dynamics on a network with dynamical adaptive changes of the underlying network topology, and thus they link classes of mechanisms that were previously studied in isolation. Here adding one and one certainly does not make two, but gives rise to a number of new phenomena, including highly robust se- organization of topology and dynamics and other remarkably rich dynamical beh- iors.
This book provides an ideal introduction to the use of Feynman path integrals in the fields of quantum mechanics and statistical physics. It is written for graduate students and researchers in physics, mathematical physics, applied mathematics as well as chemistry. The material is presented in an accessible manner for readers with little knowledge of quantum mechanics and no prior exposure to path integrals. It begins with elementary concepts and a review of quantum mechanics that gradually builds the framework for the Feynman path integrals and how they are applied to problems in quantum mechanics and statistical physics. Problem sets throughout the book allow readers to test their understanding and reinforce the explanations of the theory in real situations. Features: Comprehensive and rigorous yet, presents an easy-to-understand approach. Applicable to a wide range of disciplines. Accessible to those with little, or basic, mathematical understanding.
Statistical Mechanics: Fundamentals and Model Solutions, Second Edition Fully updated throughout and with new chapters on the Mayer expansion for classical gases and on cluster expansion for lattice models, this new edition of Statistical Mechanics: Fundamentals and Model Solutions provides a comprehensive introduction to equilibrium statistical mechanics for advanced undergraduate and graduate students of mathematics and physics. The author presents a fresh approach to the subject, setting out the basic assumptions clearly and emphasizing the importance of the thermodynamic limit and the role of convexity. With problems and solutions, the book clearly explains the role of models for physical systems, and discusses and solves various models. An understanding of these models is of increasing importance as they have proved to have applications in many areas of mathematics and physics. Features Updated throughout with new content from the field An established and well-loved textbook Contains new problems and solutions for further learning opportunity Author Professor Teunis C. Dorlas is at the Dublin Institute for Advanced Studies, Ireland.
This book represents the experience of successful researchers from four continents on a broad range of intelligent systems, and it hints how to avoid anticipated conflicts and problems during multidisciplinary innovative research from Industry 4.0 and/or Internet of Things through modern machine learning, and software agent applications to open data science big data/advance analytics/visual analytics/text mining/web mining/knowledge discovery/deep data mining issues. The considered intelligent part is essential in most smart/control systems, cyber security, bioinformatics, virtual reality, robotics, mathematical modelling projects, and its significance rapidly increases in other technologies. Theoretical foundations of fuzzy sets, mathematical and non-classical logic also are rapidly developing.
This book gathers the lecture notes of courses given at the 2010 summer school in theoretical physics in Les Houches, France, Session XCIV. Written in a pedagogical style, this volume illustrates how the field of quantum gases has flourished at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics and quantum information. The physics of correlated atoms in optical lattices is covered from both theoretical and experimental perspectives, including the Bose and Fermi Hubbard models, and the description of the Mott transition. Few-body physics with cold atoms has made spectacular progress and exact solutions for 3-body and 4-body problems have been obtained. The remarkable collisional stability of weakly bound molecules is at the core of the studies of molecular BEC regimes in Fermi gases. Entanglement in quantum many-body systems is introduced and is a key issue for quantum information processing. Rapidly rotating quantum gases and optically induced gauge fields establish a remarkable connection with the fractional quantum Hall effect for electrons in semiconductors. Dipolar quantum gases with long range and anisotropic interaction lead to new quantum degenerate regimes in atoms with large magnetic moments, or electrically aligned polar molecules. Experiments with ultracold fermions show how quantum gases serve as ''quantum simulators'' of complex condensed matter systems through measurements of the equation of state. Similarly, the recent observation of Anderson localization of matter waves in a disordered optical potential makes a fruitful link with the behaviour of electrons in disordered systems.
This book formulates a unified approach to the description of many-particle systems combining the methods of statistical physics and quantum field theory. The benefits of such an approach are in the description of phase transitions during the formation of new spatially inhomogeneous phases, as well in describing quasi-equilibrium systems with spatially inhomogeneous particle distributions (for example, self-gravitating systems) and metastable states. The validity of the methods used in the statistical description of many-particle systems and models (theory of phase transitions included) is discussed and compared. The idea of using the quantum field theory approach and related topics (path integration, saddle-point and stationary-phase methods, Hubbard-Stratonovich transformation, mean-field theory, and functional integrals) is described in detail to facilitate further understanding and explore more applications. To some extent, the book could be treated as a brief encyclopedia of methods applicable to the statistical description of spatially inhomogeneous equilibrium and metastable particle distributions. Additionally, the general approach is not only formulated, but also applied to solve various practically important problems (gravitating gas, Coulomb-like systems, dusty plasmas, thermodynamics of cellular structures, non-uniform dynamics of gravitating systems, etc.).
This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
This book bridges the current gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems. As an alternative approach, the authors use the symmetry of the system directly to formulate the appropriate models, and also to analyze the dynamics. Complex systems with symmetry arise in a wide variety of fields, including communication networks, molecular dynamics, manufacturing businesses, ecosystems, underwater vehicle dynamics, celestial and spacecraft dynamics and continuum mechanics. A general approach for their analysis has been to derive a detailed model of their individual parts, connect the parts and note that the system contains some sort of symmetry, then attempt to exploit this symmetry in order to simplify numerical computations. This approach can result in highly complicated models that are difficult to analyze even numerically. The alternative approach, while nonstandard, is not entirely new among the mathematics community. However, there is much less familiarity with the techniques of symmetry-breaking bifurcation, as they apply to the engineering, design and fabrication, of complex systems, in particular, nonlinear sensor devices with special emphasis on the conceptualization and development of new technologies of magnetic sensors such as fluxgate magnetometers and SQUID (Superconducting Quantum Interference Devices), E-- (electric-field) sensors, and communication and navigation systems that require multiple frequencies of operation, such as radar and antenna devices as well as gyroscopic systems.
This book concentrates on the properties of the stationary states in chaotic systems of particles or fluids, leaving aside the theory of the way they can be reached. The stationary states of particles or of fluids (understood as probability distributions on microscopic configurations or on the fields describing continua) have received important new ideas and data from numerical simulations and reviews are needed. The starting point is to find out which time invariant distributions come into play in physics. A special feature of this book is the historical approach. To identify the problems the author analyzes the papers of the founding fathers Boltzmann, Clausius and Maxwell including translations of the relevant (parts of) historical documents. He also establishes a close link between treatment of irreversible phenomena in statistical mechanics and the theory of chaotic systems at and beyond the onset of turbulence as developed by Sinai, Ruelle, Bowen (SRB) and others: the author gives arguments intending to support strongly the viewpoint that stationary states in or out of equilibrium can be described in a unified way. In this book it is the "chaotic hypothesis," which can be seen as an extension of the classical ergodic hypothesis to non equilibrium phenomena, that plays the central role. It is shown that SRB - often considered as a kind of mathematical playground with no impact on physical reality - has indeed a sound physical interpretation; an observation which to many might be new and a very welcome insight. Following this, many consequences of the chaotic hypothesis are analyzed in chapter 3 - 4 and in chapter 5 a few applications are proposed. Chapter 6 is historical: carefully analyzing the old literature on the subject, especially ergodic theory and its relevance for statistical mechanics; an approach which gives the book a very personal touch. The book contains an extensive coverage of current research (partly from the authors and his coauthors publications) presented in enough detail so that advanced students may get the flavor of a direction of research in a field which is still very much alive and progressing. Proofs of theorems are usually limited to heuristic sketches privileging the presentation of the ideas and providing references that the reader can follow, so that in this way an overload of this text with technical details could be avoided.
This textbook provides a comprehensive, yet accessible, introduction to statistical mechanics. Crafted and class-tested over many years of teaching, it carefully guides advanced undergraduate and graduate students who are encountering statistical mechanics for the first time through this - sometimes - intimidating subject. The book provides a strong foundation in thermodynamics and the ensemble formalism of statistical mechanics. An introductory chapter on probability theory is included. Applications include degenerate Fermi systems, Bose-Einstein condensation, cavity radiation, phase transitions, and critical phenomena. The book concludes with a treatment of scaling theories and the renormalization group. In addition, it provides clear descriptions of how to understand the foundational mathematics and physics involved and includes exciting case studies of modern applications of the subject in physics and wider interdisciplinary areas. Key Features: Presents the subject in a clear and entertaining style which enables the author to take a sophisticated approach whilst remaining accessible Contains contents that have been carefully reviewed with a substantial panel to ensure that coverage is appropriate for a wide range of courses, worldwide Accompanied by volumes on thermodynamics and non-equilibrium statistical mechanics, which can be used in conjunction with this book, on courses which cover both thermodynamics and statistical mechanics
Professionals recognize entropy-enthalpy compensation as an important factor in molecular recognition, lead design, water networks, and protein engineering. It can be experimentally studied by proper combinations of diverse spectroscopic approaches with isothermal titration calorimetry and is clearly related to molecular dynamics. So, how should we treat entropy-enthalpy compensation? Is it a stubborn hindrance that solely complicates the predictability of phenomena otherwise laid on the line by Mother Nature? How should we then deal with it? This book dwells on these posers. It combines two chapters written by globally recognized specialists. Chapter 1 deals with general issues and suggests a definite approach to how we may answer the posers. Chapter 2 shows how the approach outlined might be successfully applied in a rational design of enzymes. This might provide other interesting strategic perspectives in the general theoretical physical chemistry field. |
You may like...
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,694
Discovery Miles 26 940
Nonlinear Time Series Analysis with R
Ray Huffaker, Marco Bittelli, …
Hardcover
R2,751
Discovery Miles 27 510
Mystery Of Time, The: Asymmetry Of Time…
Alexander L Kuzemsky
Hardcover
R3,777
Discovery Miles 37 770
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,700
Discovery Miles 17 000
Integrability, Supersymmetry and…
Sengul Kuru, Javier Negro, …
Hardcover
R2,722
Discovery Miles 27 220
|