![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
100 years after the first observation of ripening by Ostwald and 40 years after the first publication of a theory describing this process, this monograph presents, in a self-consistent and comprehensive manner, all the bits and pieces of coarsening theories so that the main issues and the underlying mathematics of self-similar coarsening of dispersed systems can be understood. It contains all of the background material necessary to understand growth and coarsening of spherical particles or droplets in a liquid or solid matrix. Some basic knowledge of heat and mass transfer, thermodynamics and differential equations would be helpful, but not necessary, as all the concepts required are introduced. The text is suitable for advanced undergraduate and graduate students as well as for researchers. Rather than giving a complete survey of the field, it presents a careful derivation of the existing results and places them into some perspective.
This book aims to present an information-theoretical approach to thermodynamics and its generalisations. On the one hand, it generalises the concept of information thermodynamics' to that of information dynamics' in order to stress applications outside thermal phenomena. On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together. Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras. The concept of higher-order temperatures is explained and applied to biological and linguistic systems. The theory of open systems is presented in a new, much more general form. Audience: This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communication engineers, and all those interested in entropy and open systems. It can also be recommended as a supplementary text.
This book contains the courses given at the Fourth School on Statistical Physics and Cooperative Systems held at Santiago, Chile, from 12th to 16th December 1994. This School brings together scientists working on subjects related to recent trends in complex systems. Some of these subjects deal with dynamical systems, ergodic theory, cellular automata, symbolic and arithmetic dynamics, spatial systems, large deviation theory and neural networks. Scientists working in these subjects come from several aeras: pure and applied mathematics, non linear physics, biology, computer science, electrical engineering and artificial intelligence. Each contribution is devoted to one or more of the previous subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing mostly new results. The expository text of Roberto Livi concerns the study of coupled map lattices (CML) as models of spatially extended dynamical systems. CML is one of the most used tools for the investigation of spatially extended systems. The paper emphasizes rigorous results about the dynamical behavior of one dimensional CML; i.e. a uniform real local function defined in the interval [0,1], interacting with its nearest neighbors in a one dimensional lattice.
This book is the Proceedings of the First International Symposium for Science on Form. The Symposium was held on November 26 through 30, 1985 at the University of Tsukuba, Japan. It was organized by The Society for Science on Form, J::.!pan, and sponsored by the Foundation for Advancement of International Science (F AIS). The purpose of the Symposium was to discuss interdisciplinal science aspects of form. "Form", to exhibit its tremendous characters, depends on the material and the changes. But, it is the form that appears evident at once and endures. Form is absorbed from every field as media of information. Thirty years and more ago, interdisciplinal problems between earthethics and science were submitted to a symposium on Form in Nature and Art. The relation between form and function had been emphasized philosophically and psychologically. In this quarter century, information theory had exactly decided figures, electronic computer had easily calculated graphics, and laser hologram had completely contained the objective image and reconstructed it.
This thesis introduces readers to the Standard Model, the top quark and its properties, before explaining the concept of spin correlation measurement. The first measurement of top quark spin correlations at the LHC in the lepton+jets decay channel is presented. As the heaviest elementary particle, the top quark plays an essential role in the Standard Model of elementary particle physics. In the case of top quarks being produced in pairs at hadron colliders, the Standard Model predicts their spins to be correlated. The degree of correlation depends on both the production mechanism and properties of the top quark. Any deviation from the Standard Model prediction can be an indicator for new physics phenomena. The thesis employs an advanced top quark reconstruction algorithm including dedicated identification of the up- and down-type quarks from the W boson decay.
This is a unique and exciting graduate and advanced undergraduate text written by a highly respected physicist who had made significant contributions to the subject. This book conveys to the reader that statistical mechanics is a growing and lively subject. It deals with many modern topics from a physics standpoint in a very physical way. Particular emphasis is given to the fundamental assumption of statistical mechanics S=1n and its logical foundation. Calculational rules are derived without resorting to abstract ensemble theory.
This book contains lectures given at the Institute for Scientific Interchange (I.S.I., Turin) in 1983 - 1984 on the exact solution of the 8-vertex and related models and extensions of the Baxter model to 3 dimensions.
This book contains lectures given at the Institute for Scientific Interchange (I.S.I., Turin) in 1983 - 1984 on the exact solution of the 8-vertex and related models and extensions of the Baxter model to 3 dimensions.
In a certain sense this book has been twenty-five years in the writing, since I first struggled with the foundations of the subject as a graduate student. It has taken that long to develop a deep appreciation of what Gibbs was attempting to convey to us near the end of his life and to understand fully the same ideas as resurrected by E.T. Jaynes much later. Many classes of students were destined to help me sharpen these thoughts before I finally felt confident that, for me at least, the foundations of the subject had been clarified sufficiently. More than anything, this work strives to address the following questions: What is statistical mechanics? Why is this approach so extraordinarily effective in describing bulk matter in terms of its constituents? The response given here is in the form of a very definite point of view-the principle of maximum entropy (PME). There have been earlier attempts to approach the subject in this way, to be sure, reflected in the books by Tribus [Thermostat ics and Thermodynamics, Van Nostrand, 1961], Baierlein [Atoms and Information Theory, Freeman, 1971], and Hobson [Concepts in Statistical Mechanics, Gordon and Breach, 1971].
Physicists, when modelling physical systems with a large number of degrees of freedom, and statisticians, when performing data analysis, have developed their own concepts and methods for making the best' inference. But are these methods equivalent, or not? What is the state of the art in making inferences? The physicists want answers. More: neural computation demands a clearer understanding of how neural systems make inferences; the theory of chaotic nonlinear systems as applied to time series analysis could profit from the experience already booked by the statisticians; and finally, there is a long-standing conjecture that some of the puzzles of quantum mechanics are due to our incomplete understanding of how we make inferences. Matter enough to stimulate the writing of such a book as the present one. But other considerations also arise, such as the maximum entropy method and Bayesian inference, information theory and the minimum description length. Finally, it is pointed out that an understanding of human inference may require input from psychologists. This lively debate, which is of acute current interest, is well summarized in the present work.
This book is an introduction to the dynamics of reaction-diffusion systems, with a focus on fronts and stationary spatial patterns. Emphasis is on systems that are non-standard in the sense that either the transport is not simply classical diffusion (Brownian motion) or the system is not homogeneous. A important feature is the derivation of the basic phenomenological equations from the mesoscopic system properties. Topics addressed include transport with inertia, described by persistent random walks and hyperbolic reaction-transport equations and transport by anomalous diffusion, in particular subdiffusion, where the mean square displacement grows sublinearly with time. In particular reaction-diffusion systems are studied where the medium is in turn either spatially inhomogeneous, compositionally heterogeneous or spatially discrete. Applications span a vast range of interdisciplinary fields and the systems considered can be as different as human or animal groups migrating under external influences, population ecology and evolution, complex chemical reactions, or networks of biological cells. Several chapters treat these applications in detail.
This topical volume reviews applications of continuum mechanics to systems in geophysics and the environment. Part of the text is devoted to numerical simulations and modeling. The topics covered include soil mechanics and porous media, glacier and ice dynamics, climatology and lake physics, climate change as well as numerical algorithms. The book, written by well-known experts, addresses researchers and students interested in physical aspects of our environment.
I am very pleased and privileged to write a short foreword for the monograph of Dean Driebe: Fully Chaotic Maps and Broken Time Symmetry. Despite the technical title this book deals with a problem of fundamental importance. To appreciate its meaning we have to go back to the tragic struggle that was initiated by the work of the great theoretical physicist Ludwig Boltzmann in the second half of the 19th century. Ludwig Boltzmann tried to emulate in physics what Charles Darwin had done in biology and to formulate an evolutionary approach in which past and future would play different roles. Boltzmann's work has lead to innumerable controversies as the laws of classical mechanics (as well as the laws of quan tum mechanics) as traditionally formulated imply symmetry between past and future. As is well known, Albert Einstein often stated that "Time is an illusion." Indeed, as long as dynamics is associated with trajectories satisfy ing the equations of classical mechanics, explaining irreversibility in terms of trajectories appears, as Henri Poincare concluded, as a logical error. After a long struggle, Boltzmann acknowledged his defeat and introduced a probabil ity description in which all microscopic states are supposed to have the same a priori probability. Irreversibility would then be due to the imperfection of our observations associated only with the "macroscopic" state described by temperature, pressure and other similar parameters. Irreversibility then appears devoid of any fundamental significance. However today this position has become untenable."
This is the first comprehensive presentation of the quantum non-linear sigma-models. The original papers consider in detail geometrical properties and renormalization of a generic non-linear sigma-model, illustrated by explicit multi-loop calculations in perturbation theory.
This book focuses on the assembly, organization and resultant collective dynamics of soft matter systems maintained away from equilibrium by an energy flux. Living matter is the ultimate example of such systems, which are comprised of different constituents on very different scales (ions, nucleic acids, proteins, cells). The result of their diverse interactions, maintained using the energy from physiological processes, is a fantastically well-organized and dynamic whole. This work describes results from minimal, biomimetic systems and primarily investigates membranes and active emulsions, as well as key aspects of both soft matter and non-equilibrium phenomena. It is shown that these minimal reconstitutions are already capable of a range of complex behaviour such as nonlinear electric responses, chemical communication and locomotion. These studies will bring us closer to a fundamental understanding of complex systems by reconstituting key aspects of their form and function in simple model systems. Further, they may also serve as the first technological steps towards artificial soft functional matter.
This thesis analyses how supersymmetric (SUSY) extensions of the Standard Model (SM) of particle physics can be constrained using information from Higgs physics, electroweak precision observables and direct searches for new particles. Direct searches for SUSY particles at the LHC have not resulted in any signal so far, and limits on the SUSY parameter space have been set. Measurements of the properties of the observed Higgs boson at 125 GeV as well as of the W boson mass can provide valuable indirect constraints, supplementing the ones from direct searches. Precise calculations are performed for Higgs decays and electroweak precision observables within the minimal supersymmetric extension of the Standard Model and the next to-minimal supersymmetric extension of the Standard Model. Furthermore, a method is presented to reinterpret the LHC limits from direct SUSY searches in more realistic SUSY scenarios. The phenomenological consequences of those results are thoroughly analysed.
This book contains the courses given at the Third School on Statistical Physics and Cooperative Systems held at Santiago, Chile, from 14th to 18th December 1992. The main idea of this periodic school was to bring together scientists work with recent trends in Statistical Physics. More precisely ing on subjects related related with non linear phenomena, dynamical systems, ergodic theory, cellular au tomata, symbolic dynamics, large deviation theory and neural networks. Scientists working in these subjects come from several areas: mathematics, biology, physics, computer science, electrical engineering and artificial intelligence. Recently, a very important cross-fertilization has taken place with regard to the aforesaid scientific and technological disciplines, so as to give a new approach to the research whose common core remains in statistical physics. Each contribution is devoted to one or more of the previous subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing mostly new results. The expository text of Fran"
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm-Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef-Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.
This thesis presents a theoretical analysis of the behavior of glasses under external perturbations, i.e. compression and shear straining. Written in a pedagogical style, it explains every facet of the problem in detail, including many crucial steps that cannot be found in the existing literature-making it particularly useful for students and as an introduction to the subject of glassy physics. In glassy systems the behavior under external compression and shear-strain is quite peculiar. Many complex phenomena are observed and grasping them fully would be a major step toward a complete theory of the glass transition. This thesis makes important advances in this direction, analyzing the behavior of glassy states in painstaking detail and reproducing it in the framework of a recently developed mean field theory for glasses that has proven extremely successful for jamming, demonstrating its predictive power in the context of metastable glassy states obtained through nonequilibrium protocols.
This selection of reviews and papers is intended to stimulate renewed reflection on the fundamental and practical aspects of probability in physics. While putting emphasis on conceptual aspects in the foundations of statistical and quantum mechanics, the book deals with the philosophy of probability in its interrelation with mathematics and physics in general. Addressing graduate students and researchers in physics and mathematics together with philosophers of science, the contributions avoid cumbersome technicalities in order to make the book worthwhile reading for nonspecialists and specialists alike.
This thesis reveals the utility of pursuing a statistical physics approach in the description of wave interactions in multimode optical systems. To that end, the appropriate Hamiltonian models are derived and their limits of applicability are discussed. The versatility of the framework allows the characterization of ordered and disordered lasers in open and closed cavities in a unified scheme, from standard mode-locking to random lasers. With the use of replica method and Monte Carlo simulations, the models are categorized on the basis of universal properties, and nontrivial predictions of experimental relevance are obtained. In particular, the approach makes it possible to nonperturbatively treat the interplay between disorder and nonlinearity and to envisage novel and fascinating physical phenomena such as glassy random lasers, providing a novel way to experimentally investigate replica symmetry breaking.
Symmetry is at the heart of our understanding of matter. This book tells the fascinating story of the constituents of matter from a common symmetry perspective. The standard model of elementary particles and the periodic table of chemical elements have the common goal to bring order in the bewildering chaos of the constituents of matter. Their success relies on the presence of fundamental symmetries in their core. The purpose of Shattered Symmetry is to share the admiration for the power and the beauty of these symmetries. The reader is taken on a journey from the basic geometric symmetry group of a circle to the sublime dynamic symmetries that govern the motions of the particles. Along the way the theory of symmetry groups is gradually introduced with special emphasis on its use as a classification tool and its graphical representations. This is applied to the unitary symmetry of the eightfold way of quarks, and to the four-dimensional symmetry of the hydrogen atom. The final challenge is to open up the structure of Mendeleev's table which goes beyond the symmetry of the hydrogen atom. Breaking this symmetry to accommodate the multi-electron atoms requires us to leave the common ground of linear algebras and explore the potential of non-linearity.
The "Turbulence and Interactions 2009" (TI2009) conference was held in Saint- Luce on the island of La Martinique, France, on May 31-June 5, 2009. The sci- tific sponsors of the conference were * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * Institut Jean Le Rond d'Alembert, Paris, * ONERA. This second TI conference was very successful as it attracted 65 researchers from 17 countries. The magnificent venue and the beautiful weather helped the participants to discuss freely and casually, share ideas and projects, and spend very good times all together. The organisers were fortunate in obtaining the presence of the following - vited speakers: L. Fuchs (KTH, Stockholm and Lund University), J. Jimenez (Univ. Politecnica Madrid), C.-H. Moeng (NCAR), A. Scotti (University of North Carolina), L. Shen (Johns Hopkins University) and A.J. Smits (Princeton Univ- sity). The topics covered by the 62 contributed papers ranged from experimental results through theory to computations. They represent a snapshot of the state-- the-art in turbulence research. The papers of the conference went through the usual reviewing process and the result is given in this book of Proceedings. In the present volume, the reader will find the keynote lectures followed by the contributed talks given in alphabetical order of the first author.
This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike, and addresses the latest developments at the intersection of physics, engineering and computational science. These involve complex systems, in which multiple simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic; granular matter; biological transport; transport networks; data acquisition; data analysis and technological applications. Different perspectives, i.e., modeling, simulations, experiments, and phenomenological observations are considered.
This book contains contributions by some of the leading researchers in the area of grey systems theory and applications. All the papers included in this volume are selected from the contributions physically presented at the 2009 IEEE International Conference on Grey Systems and Intelligent Services, November 11 - 12, 2009, Nanjing, Jiangsu, People's Republic of China. This event was jointly sponsored by IEEE Systems, Man, and Cybernetics Society, Natural Science Foundation of China, and Grey Systems Society of China. Additionally, Nanjing University of Aeronautics and Astronautics also invested heavily in this event with its direct and indirect financial and administrative supports. The conference aimed at bringing together all scholars and experts in the fields of grey systems and intelligent services from around the world to share their cutting edge research results, exchange innovative ideas, promote mutual understanding, and seek potential opportunities for collaboration. The conference program c- mittee received 1054 full paper submissions from 16 countries and geographical regions. Nine hundred sixty four papers were submitted for regular sessions and 90 papers were tunnelled directly for special topic sessions. All the submitted papers, including those aiming at special topic sessions, were rigorously reviewed by at least 3 reviewers. Based on the reviewers' reports, 251 papers were accepted for oral presentations, while 99 accepted for poster presentations. In other words, only slightly over 33% of the submitted papers were accepted by this conference. The rate of acceptance was lower than one third of the total submissions. |
You may like...
Stable Numerical Schemes for Fluids…
Cornel Marius Murea
Hardcover
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
Computational Overview of Fluid…
Khaled Ghaedi, Ahmed Alhusseny, …
Hardcover
R3,074
Discovery Miles 30 740
Modeling Approaches and Computational…
Shankar Subramaniam, S. Balachandar
Paperback
R3,925
Discovery Miles 39 250
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Advances in Simulation of Wing and…
Rolf Radespiel, Reinhard Niehuis, …
Hardcover
R6,432
Discovery Miles 64 320
|