![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
After an insightful introductory part on recent developments in the thermodynamics of small systems, the author presents his contribution to a long-standing problem, namely the connection between irreversibility and dissipation. He develops a method based on recent results on fluctuation theorems that is able to estimate dissipation using only information acquired in a single, sufficiently long, trajectory of a stationary nonequilibrium process. This part ends with a remarkable application of the method to the analysis of biological data, in this case, the fluctuations of a hair bundle. The third part studies the energetics of systems that undergo symmetry breaking transitions. These theoretical ideas lead to, among other things, an experimental realization of a Szilard engine using manipulated colloids. This work has the potential for important applications ranging from the analysis of biological media to the design of novel artificial nano-machines.
This text presents the two complementary aspects of thermal physics as an integrated theory of the properties of matter. Conceptual understanding is promoted by thorough development of basic concepts. In contrast to many texts, statistical mechanics, including discussion of the required probability theory, is presented first. This provides a statistical foundation for the concept of entropy, which is central to thermal physics. A unique feature of the book is the development of entropy based on Boltzmann's 1877 definition; this avoids contradictions or ad hoc corrections found in other texts. Detailed fundamentals provide a natural grounding for advanced topics, such as black-body radiation and quantum gases. An extensive set of problems (solutions are available for lecturers through the OUP website), many including explicit computations, advance the core content by probing essential concepts. The text is designed for a two-semester undergraduate course but can be adapted for one-semester courses emphasizing either aspect of thermal physics. It is also suitable for graduate study.
This volume contains a contemporary, integrated description of the processes of language. These range from fast scales (fractions of a second) to slow ones (over a million years). The contributors, all experts in their fields, address language in the brain, production of sentences and dialogues, language learning, transmission and evolutionary processes that happen over centuries or millenia, the relation between language and genes, the origins of language, self-organization, and language competition and death. The book as a whole will help to show how processes at different scales affect each other, thus presenting language as a dynamic, complex and profoundly human phenomenon.
This book advances systems thinking by introducing a new philosophy of systemic knowing. It argues that there are inescapable limits to rational understanding. Humankind has always depended on extended ways of knowing to complement the rational-analytic approach. The book establishes that the application of such methods is fundamental to systemic practice. The author advocates embracing two modes of consciousness: intentionality, which Western philosophy has long recognized, and non-intentional awareness, which Eastern philosophy additionally highlights. The simultaneity of these two modes of consciousness, and the variety of knowings they spawn are harnessed for a more holistic, systemic knowing. Four practices from fields related to systems thinking are examined: two contemporary action research methodologies from the US and the UK; the Sumedhian (Indian) approach to inquiry about processes within groups; and a technique of group psychotherapy originating in Eastern Europe. Each of these systematically harnesses knowing using both modes of consciousness. Therefore, the author insists, such approaches must be included in systemic practice, in purposeful and methodical juxtaposition to rational-analytic ways. The book provides examples and guidelines for deployment. "All researchers and practitioners of systems thinking and action research must read this book...Raghav has craftfully blended Eastern and Western wisdom. He uses his immersion into Eastern ways of knowing practically, to elaborate the systems philosophy in rich detail. He has incorporated, from cooperative inquiry as action research, the idea of four ways of knowing: practical, propositional, presentational and experiential, to bolster the foundations of systems thinking" SHANKAR SANKARAN, Professor, University of Technology Sydney, Australia; President International Society of Systems Sciences (ISSS) 2019-2020 "This is a book with the potential to stimulate the emergence of a new paradigm. Raghav shows that systems thinking can transcend rational analysis and incorporate other ways of knowing, such as arts-based methods... also, rather than be overly preoccupied with striving for change, there is value in simply abiding, which comes with a deep appreciation of the ecological relationships we are part of. It's not that rational analysis is wrong - it's that it is only part of a genuinely transformative practice". GERALD MIDGLEY, Co-Director, Centre for Systems Studies, University of Hull; former President, ISSS (2013-14) "Raghav Rajagopalan's writing on generating deep appreciation for the social and ecological interdependencies ties in closely with my own work. The philosophical ideas he develops contain the tracings and essential tones of Gregory Bateson's idea of "Mind" as a process of living complexities reaching well beyond the notion of the body. This book demonstrates outstanding erudition and deep compassion at the same time. It should delight the adventurous reader unafraid of big questions". NORA BATESON, President of the International Bateson Institute
This book introduces a variety of statistical tools for characterising and designing the dynamical features of complex quantum systems. These tools are applied in the contexts of energy transfer in photosynthesis, and boson sampling. In dynamical quantum systems, complexity typically manifests itself via the interference of a rapidly growing number of paths that connect the initial and final states. The book presents the language of graphs and networks, providing a useful framework to discuss such scenarios and explore the rich phenomenology of transport phenomena. As the complexity increases, deterministic approaches rapidly become intractable, which leaves statistics as a viable alternative.
This work presents a study of methods useful for modeling and understanding dynamical systems in the Galaxy. A natural coordinate system for the study of dynamical systems is the angle-action coordinate system. New methods for the approximation of the action-angle variables in general potentials are presented and discussed. These new tools are applied to the construction of dynamical models for two of the Galaxy's components: tidal streams and the Galactic disc. Tidal streams are remnants of tidally stripped satellites in the Milky Way that experience the effects of the large scale structure of the Galactic gravitational potential, while the Galactic disc provides insights into the nature of the Galaxy near the Sun. Appropriate action-based models are presented and discussed for these components, and extended to include further information such as the metallicity of stars.
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience."
One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and necessary circuit realizations for on-chip monitoring and performance calibration. The associated problems are addressed at various abstraction levels, i.e. circuit level, architecture level and system level. It therefore provides a broad view on the various solutions that have to be used and their possible combination in very effective complementary techniques for both analog/mixed-signal and digital circuits. The feasibility of the described algorithms and built-in circuitry has been verified by measurements from the silicon prototypes fabricated in standard 90 nm and 65 nm CMOS technology.
This book introduces the novel concept of a fuzzy network whose nodes are rule bases and the connections between the nodes are the interactions between the rule bases in the form of outputs fed as inputs. The concept is presented as a systematic study for improving the feasibility and transparency of fuzzy models by means of modular rule bases whereby the model accuracy and efficiency can be optimised in a flexible way. The study uses an effective approach for fuzzy rule based modelling of complex systems that are characterised by attributes such as nonlinearity, uncertainty, dimensionality and structure.The approach is illustrated by formal models for fuzzy networks, basic and advanced operations on network nodes, properties of operations, feedforward and feedback fuzzy networks as well as evaluation of fuzzy networks. The results are demonstrated by numerous examples, two case studies and software programmes within the Matlab environment that implement some of the theoretical methods from the book. The book shows the novel concept of a fuzzy network with networked rule bases as a bridge between the existing concepts of a standard fuzzy system with a single rule base and a hierarchical fuzzy system with multiple rule bases.
This book describes a promising approach to problems in the foundations of quantum mechanics, including the measurement problem. The dynamics of ensembles on configuration space is shown here to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian. Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptions of quantum systems interacting with classical measurement devices and quantum matter fields interacting gravitationally with a classical spacetime.
This book deals with the basic principles and techniques of nonequilibrium statistical mechanics. The importance of this subject is growing rapidly in view of the advances being made, both experimentally and theoretically, in statistical physics, chemical physics, biological physics, complex systems and several other areas. The presentation of topics is quite self-contained, and the choice of topics enables the student to form a coherent picture of the subject. The approach is unique in that classical mechanical formulation takes center stage. The book is of particular interest to advanced undergraduate and graduate students in engineering departments.
This book addresses the application of methods used in statistical physics to complex systems-from simple phenomenological analogies to more complex aspects, such as correlations, fluctuation-dissipation theorem, the concept of free energy, renormalization group approach and scaling. Statistical physics contains a well-developed formalism that describes phase transitions. It is useful to apply this formalism for damage phenomena as well. Fractals, the Ising model, percolation, damage mechanics, fluctuations, free energy formalism, renormalization group, and scaling, are some of the topics covered in Statistical Physics of Phase Transitions.
This book reveals the underlying mechanisms of complexity and stochastic evolutions of traffic flows. Using Eulerian and Lagrangian measurements, the authors propose lognormal headway/spacing/velocity distributions and subsequently develop a Markov car-following model to describe drivers' random choices concerning headways/spacings, putting forward a stochastic fundamental diagram model for wide scattering flow-density points. In the context of highway onramp bottlenecks, the authors present a traffic flow breakdown probability model and spatial-temporal queuing model to improve the stability and reliability of road traffic flows. This book is intended for researchers and graduate students in the fields of transportation engineering and civil engineering.
This book uses less strict yet still formal mathematical language to clarify a variety of concepts in Quantum Field Theory that remain somewhat "fuzzy" in many books designed for undergraduates and fresh graduates. The aim is not to replace formal books on Quantum Field Theory, but rather to offer a helpful complementary tool for beginners in the field. Features include a reader-friendly introduction to tensor calculus and the concept of manifolds; a simple and robust treatment for dimensional regularization; a consistent explanation of the renormalization procedure, step by step and in a transparent manner at all orders, using the QED Lagrangian; and extensive treatment of infrared as well as ultraviolet divergences. The most general (Lorentz invariant) form of Noether's theorem is presented and applied to a few simple yet relevant examples in Quantum Field Theory. These and further interesting topics are addressed in a way that will be accessible for the target readership. Some familiarity with basic notions of Quantum Field Theory and the basics of Special Relativity is assumed.
"Stochastic Tools in Mathematics and Science" covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. The topics covered include conditional expectations, stochastic processes, Brownian motion and its relation to partial differential equations, Langevin equations, the Liouville and Fokker-Planck equations, as well as Markov chain Monte Carlo algorithms, renormalization, basic statistical mechanics, and generalized Langevin equations and the Mori-Zwanzig formalism. The applications include sampling algorithms, data assimilation, prediction from partial data, spectral analysis, and turbulence. The book is based on lecture notes from a class that has attracted graduate and advanced undergraduate students from mathematics and from many other science departments at the University of California, Berkeley. Each chapter is followed by exercises. The book will be useful for scientists and engineers working in a wide range of fields and applications. For this new edition the material has been thoroughly reorganized and updated, and new sections on scaling, sampling, filtering and data assimilation, based on recent research, have been added. There are additional figures and exercises. Review of earlier edition: "This is an excellent concise textbook which can be used for self-study by graduate and advanced undergraduate students and as a recommended textbook for an introductory course on probabilistic tools in science." Mathematical Reviews, 2006
Current companies and communities of practice are involved in intensive networking and collaborative systems by a great variety of electronic relations and collaborative interactions. This has resulted in entangled systems that need to be managed efficiently and in an autonomous way, thus facing many issues and challenges. The extensive research produced in this book will help virtual organizations to exploit latest and powerful technologies based on Grid and Wireless infrastructures as well as Cloud computing in order to alleviate complex issues and challenges arisen in networking and collaborative systems, in terms of collaborative applications, resource management, mobility, and security and system resilience. The ultimate aim of the book is to stimulate research that leads to the creation of responsive environments for networking and, at longer-term, the development of adaptive, secure, mobile, and intuitive intelligent systems for collaborative work and learning. Academic researchers, professionals and practitioners in the field will be inspired and put in practice the ideas and experiences proposed in the book in order to evaluate them for their specific research and work.
The application of statistical methods to physics is essential. This unique book on statistical physics offers an advanced approach with numerous applications to the modern problems students are confronted with. Therefore the text contains more concepts and methods in statistics than the student would need for statistical mechanics alone. Methods from mathematical statistics and stochastics for the analysis of data are discussed as well. The book is divided into two parts, focusing first on the modeling of statistical systems and then on the analysis of these systems. Problems with hints for solution help the students to deepen their knowledge. The third edition has been updated and enlarged with new sections deepening the knowledge about data analysis. Moreover, a customized set of problems with solutions is accessible on the Web at extras.springer.com."
Quantum mechanics forms the foundation of all modern physics, including atomic, nuclear, and molecular physics, the physics of the elementary particles, condensed matter physics. Modern astrophysics also relies heavily on quantum mechanics. Quantum theory is needed to understand the basis for new materials, new devices, the nature of light coming from stars, the laws which govern the atomic nucleus, and the physics of biological systems. As a result the subject of this book is a required course for most physics graduate students. While there are many books on the subject, this book targets specifically graduate students and it is written with modern advances in various fields in mind. Many examples treated in the various chapters as well as the emphasis of the presentation in the book are designed from the perspective of such problems. For example, the book begins by putting the Schroedinger equation on a spatial discrete lattice and the continuum limit is also discussed, inspired by Hamiltonian lattice gauge theories. The latter and advances in quantum simulations motivated the inclusion of the path integral formulation. This formulation is applied to the imaginary-time evolution operator to project the exact ground state of the harmonic oscillator as is done in quantum simulations. As an example of how to take advantage of symmetry in quantum mechanics, one-dimensional periodic potentials are discussed, inspired by condensed matter physics. Atoms and molecules are discussed within mean-field like treatment (Hartree-Fock) and how to go beyond it. Motivated by the recent intense activity in condensed matter and atomic physics to study the Hubbard model, the electron correlations in the hydrogen molecule are taken into account by solving the two-site Hubbard model analytically. Using the canonical Hamiltonian quantization of quantum electrodynamics, the photons emerge as the quanta of the normal modes, in the same way as the phonons emerge in the treatment of the normal modes of the coupled array of atoms. This is used later to treat the interaction of radiation with atomic matter.
The paradigm of complexity is pervading both science and engineering, le- ing to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the de?nition of powerful tools for modelling, estimation, and control; and the cross-fertilization of di?erent disciplines and approaches. One of the most promising paradigms to cope with complexity is that of networked systems. Complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synch- nization, social and economics events, networks of critical infrastructures, resourcesallocation, informationprocessing, controlovercommunicationn- works, etc. Advances in this ?eld are highlighting approaches that are more and more oftenbasedondynamicalandtime-varyingnetworks, i.e.networksconsisting of dynamical nodes with links that can change over time. Moreover, recent technological advances in wireless communication and decreasing cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile ca- bilities. This is fostering the development of many engineering applications, which exploit the availability of these systems of systems to monitor and control very large-scale phenomena with ?ne resoluti
This book is the first to present the application of the hybrid system theory to systems with EPCA (equations with piecewise continuous arguments). The hybrid system paradigm is a valuable modeling tool for describing a wide range of real-world applications. Moreover, although new technology has produced, and continues to produce highly hierarchical sophisticated machinery that cannot be analyzed as a whole system, hybrid system representation can be used to reduce the structural complexity of these systems. That is to say, hybrid systems have become a modeling priority, which in turn has led to the creation of a promising research field with several application areas. As such, the book explores recent developments in the area of deterministic and stochastic hybrid systems using the Lyapunov and Razumikhin-Lyapunov methods to investigate the systems' properties. It also describes properties such as stability, stabilization, reliable control, H-infinity optimal control, input-to-state stability (ISS)/stabilization, state estimation, and large-scale singularly perturbed systems.
With the aim of providing a deeper insight into possible mechanisms of biological self-organization, this thesis presents new approaches to describe the process of self-assembly and the impact of spatial organization on the function of membrane proteins, from a statistical physics point of view. It focuses on three important scenarios: the assembly of membrane proteins, the collective response of mechanosensitive channels and the function of the twin arginine translocation (Tat) system. Using methods from equilibrium and non-equilibrium statistical mechanics, general conclusions were drawn that demonstrate the importance of the protein-protein interactions. Namely, in the first part a general aggregation dynamics model is formulated, and used to show that fragmentation crucially affects the efficiency of the self-assembly process of proteins. In the second part, by mapping the membrane-mediated forces into a simplified many-body system, the dynamic and equilibrium behaviour of interacting mechanosensitive channels is derived, showing that protein agglomeration strongly impacts its desired function. The final part develops a model that incorporates both the agglomeration and transport function of the Tat system, thereby providing a comprehensive description of this self-organizing process.
This book is based upon lectures presented in the summer of 2009 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, G. Dall'Agata, J.F. Morales, J. Simon and M. Trigiante. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and the related reworking of, the various contributions. It is the fifth volume in a series of books on the general topics of supersymmetry, supergravity, black holes and the attractor mechanism.
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.
Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics into new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way, he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel Laureates and a Fields Medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. 'Stealing the Gold', Edwards' favourite caricature of the relationship between theoretical physicists and Nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century.
This book systematically introduces the nonlinear adiabatic evolution theory of quantum many-body systems. The nonlinearity stems from a mean-field treatment of the interactions between particles, and the adiabatic dynamics of the system can be accurately described by the nonlinear Schroedinger equation. The key points in this book include the adiabatic condition and adiabatic invariant for nonlinear system; the adiabatic nonlinear Berry phase; and the exotic virtual magnetic field, which gives the geometric meaning of the nonlinear Berry phase. From the quantum-classical correspondence, the linear and nonlinear comparison, and the single particle and interacting many-body difference perspectives, it shows a distinct picture of adiabatic evolution theory. It also demonstrates the applications of the nonlinear adiabatic evolution theory for various physical systems. Using simple models it illustrates the basic points of the theory, which are further employed for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures. |
![]() ![]() You may like...
The Highway Capacity Manual: A…
Elena S. Prassas, Roger P. Roess
Hardcover
R4,764
Discovery Miles 47 640
Mystery Of Time, The: Asymmetry Of Time…
Alexander L Kuzemsky
Hardcover
R4,179
Discovery Miles 41 790
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,865
Discovery Miles 18 650
Attractor Dimension Estimates for…
Nikolay Kuznetsov, Volker Reitmann
Hardcover
R6,190
Discovery Miles 61 900
Corruption Networks - Concepts and…
Oscar M. Granados, Jose R. Nicolas-Carlock
Hardcover
R3,680
Discovery Miles 36 800
Feedback Economics - Economic Modeling…
Robert Y. Cavana, Brian C. Dangerfield, …
Hardcover
|