![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
This is a graduate level monographic textbook in the field of Computational Intelligence. It presents a modern dynamical theory of the computational mind, combining cognitive psychology, artificial and computational intelligence, and chaos theory with quantum consciousness and computation. The book introduces to human and computational mind, comparing and contrasting main themes of cognitive psychology, artificial and computational intelligence.
The domain of non-extensive thermostatistics has been subject to intensive research over the past twenty years and has matured significantly. Generalised Thermostatistics cuts through the traditionalism of many statistical physics texts by offering a fresh perspective and seeking to remove elements of doubt and confusion surrounding the area. The book is divided into two parts - the first covering topics from conventional statistical physics, whilst adopting the perspective that statistical physics is statistics applied to physics. The second developing the formalism of non-extensive thermostatistics, of which the central role is played by the notion of a deformed exponential family of probability distributions. Presented in a clear, consistent, and deductive manner, the book focuses on theory, part of which is developed by the author himself, but also provides a number of references towards application-based texts. Written by a leading contributor in the field, this book will provide a useful tool for learning about recent developments in generalized versions of statistical mechanics and thermodynamics, especially with respect to self-study. Written for researchers in theoretical physics, mathematics and statistical mechanics, as well as graduates of physics, mathematics or engineering. A prerequisite knowledge of elementary notions of statistical physics and a substantial mathematical background are required.
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, which is sometimes effectively instantaneous. The book contains reviews on such diverse areas as evolution experiments with microorganisms, the origin and evolution of viruses, evolutionary dynamics of genes and environment in cancer development, aging as an evolution-facilitating program, evolution of vision and evolution of financial markets.
What do combustion engines, fusion reactors, weather forecast, ocean ?ows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly di?erent in all cases, but it is alsowellknownthatinallofthem,onsomerelevantlengthscales,thematerial ?ows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. In fact, the term "turbulence" is used for an enormous variety of p- nomena in very di?erent ?elds, including geophysics, astrophysics, and - gineering. Unfortunately, these communities do not talk to each other too often. Therefore, back in 2005, we organized a workshop on "Interdis- plinary Aspects of Turbulence" at the Ringberg Castle in the Bavarian Alps, to discuss topics such as the basic concepts of turbulence, the di?- ent approaches of modelling and simulations used in the various areas, and also possible tests. This workshop was a great success and the proceedings can be found on the Internet (www.mpa-garching.mpg.de/mpa/publications/ proceedings/proceedings-en.html) as well as pdf-?les of several of the talks presented (www.mpa-garching. mpg.de/hydro/Turbulence/).
The author investigates athermal fluctuation from the viewpoints of statistical mechanics in this thesis. Stochastic methods are theoretically very powerful in describing fluctuation of thermodynamic quantities in small systems on the level of a single trajectory and have been recently developed on the basis of stochastic thermodynamics. This thesis proposes, for the first time, a systematic framework to describe athermal fluctuation, developing stochastic thermodynamics for non-Gaussian processes, while thermal fluctuations are mainly addressed from the viewpoint of Gaussian stochastic processes in most of the conventional studies. First, the book provides an elementary introduction to the stochastic processes and stochastic thermodynamics. The author derives a Langevin-like equation with non-Gaussian noise as a minimal stochastic model for athermal systems, and its analytical solution by developing systematic expansions is shown as the main result. Furthermore, the a uthor shows a thermodynamic framework for such non-Gaussian fluctuations, and studies some thermodynamics phenomena, i.e. heat conduction and energy pumping, which shows distinct characteristics from conventional thermodynamics. The theory introduced in the book would be a systematic foundation to describe dynamics of athermal fluctuation quantitatively and to analyze their thermodynamic properties on the basis of stochastic methods.
Metaphors, generalizations and unifications are natural and desirable ingredients of the evolution of scientific theories and concepts. Physics, in particular, obviously walks along these paths since its very beginning. This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics, one of the greatest monuments of contemporary physics. Conceived more than 130 years ago by Maxwell, Boltzmann and Gibbs, the BG theory exhibits uncountable - some of them impressive - successes in physics, chemistry, mathematics, and computational sciences, to name a few. Presently, more than two thousand publications, by over 1800 scientists around the world, have been dedicated to the nonextensive generalization. Remarkable applications have emerged, and its mathematical grounding is by now relatively well established. A pedagogical introduction to its concepts - nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT's, among others - is presented in this book as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions.
This book presents a critical and modern analysis of the conceptual foundations of statistical mechanics as laid down in Boltzmann's works. The author emphasises the relation between microscopic reversibility and macroscopic irreversibility. Students will find a clear and detailed explanation of fundamental concepts such as equipartition, entropy and ergodicity. They will learn about Brownian motion, the modern treatment of the thermodynamic limit phase transitions, the microscopic and macroscopic theory of the coexistence of phases, statistical mechanics of stationary states, and fluctuations and dissipation in chaotic motions.
This book is a result of teaching stochastic processes to junior and senior undergr- uates and beginning graduate students over many years. In teaching such a course, we have realized a need to furnish students with material that gives a mathematical presentation while at the same time providing proper foundations to allow students to build an intuitive feel for probabilistic reasoning. We have tried to maintain a b- ance in presenting advanced but understandable material that sparks an interest and challenges students, without the discouragement that often comes as a consequence of not understanding the material. Our intent in this text is to develop stochastic p- cesses in an elementary but mathematically precise style and to provide suf?cient examples and homework exercises that will permit students to understand the range of application areas for stochastic processes. We also practice active learning in the classroom. In other words, we believe that the traditional practice of lecturing continuously for 50 to 75 minutes is not a very effective method for teaching. Students should somehow engage in the subject m- ter during the teaching session. One effective method for active learning is, after at most 20 minutes of lecture, to assign a small example problem for the students to work and one important tool that the instructor can utilize is the computer. So- times we are fortunate to lecture students in a classroom containing computers with a spreadsheet program, usually Microsoft's Excel.
Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring structural and functional connectivity in the brain. Part three provides an overview of the analysis techniques currently available and highlights new developments. Part four introduces the application and translation of the concepts of brain connectivity to behavior, cognition and the clinical domain. Written for: Researchers, engineers, graduate students in complexity, applied nonlinear dynamics, neuroscience
The book introduces readers to and summarizes the current ideas and theories about the basic mechanisms for transport in chaotic flows. Typically no single paradigmatic approach exists as this topic is relevant for fields as diverse as plasma physics, geophysical flows and various branches of engineering. Accordingly, the dispersion of matter in chaotic or turbulent flows is analyzed from different perspectives. Partly based on lecture courses given by the author, this book addresses both graduate students and researchers in search of a high-level but approachable and broad introduction to the topic.
The book addresses the problem of calculation of d-dimensional integrals (conditional expectations) in filter problems. It develops new methods of deterministic numerical integration, which can be used to speed up and stabilize filter algorithms. With the help of these methods, better estimates and predictions of latent variables are made possible in the fields of economics, engineering and physics. The resulting procedures are tested within four detailed simulation studies.
In recent years, as part of the increasing "informationization" of industry and the economy, enterprises have been accumulating vast amounts of detailed data such as high-frequency transaction data in nancial markets and point-of-sale information onindividualitems in theretail sector. Similarly,vast amountsof data arenow ava- able on business networks based on inter rm transactions and shareholdings. In the past, these types of information were studied only by economists and management scholars. More recently, however, researchers from other elds, such as physics, mathematics, and information sciences, have become interested in this kind of data and, based on novel empirical approaches to searching for regularities and "laws" akin to those in the natural sciences, have produced intriguing results. This book is the proceedings of the international conference THICCAPFA7 that was titled "New Approaches to the Analysis of Large-Scale Business and E- nomic Data," held in Tokyo, March 1-5, 2009. The letters THIC denote the Tokyo Tech (Tokyo Institute of Technology)-Hitotsubashi Interdisciplinary Conference. The conference series, titled APFA (Applications of Physics in Financial Analysis), focuses on the analysis of large-scale economic data. It has traditionally brought physicists and economists together to exchange viewpoints and experience (APFA1 in Dublin 1999, APFA2 in Liege ` 2000, APFA3 in London 2001, APFA4 in Warsaw 2003, APFA5 in Torino 2006, and APFA6 in Lisbon 2007). The aim of the conf- ence is to establish fundamental analytical techniques and data collection methods, taking into account the results from a variety of academic disciplines.
Galaxies and Chaos examines the application of tools developed for Nonlinear Dynamical Systems to Galactic Dynamics and Galaxy Formation, as well as to related issues in Celestial Mechanics. The contributions collected in this volume have emerged from selected presentations at a workshop on this topic and key chapters have been suitably expanded in order to be accessible to nonspecialist researchers and postgraduate students wishing to enter this exciting field of research.
Initially a subfield of solid state physics, the study of mesoscopic systems has evolved over the years into a vast field of research in its own right. Keeping track its rapid progress, this book provides a broad survey of the latest developments in the field. The focus is on statistics and dynamics of mesoscopic systems with special emphasis on topics like quantum chaos, localization, noise and fluctuations, mesoscopic optics and quantum transport in nanostructures. Written with nonspecialists in mind, this book will also be useful to graduate students wishing to familiarize themselves with this field of research.
This book highlights latest advancement in Mathematics, Physics and Chemistry. With the theme of "Innovative Science towards Sustainability and Industrial Revolution 4.0", ICFAS 2020 brings together leading experts, scientific communities and industrialists working in the field of applied sciences and mathematics from all over the world to share the most recent developments and cutting-edge discoveries addressing sustainability and industrial revolution 4.0 in the field. The conference topics include green materials, molecular modelling, catalysis, nanodevices and nanosystems, smart materials applications, solar cells technology, computational mathematics, data analysis and visualization, and numerical analysis. The contents of this book are useful for researchers, students, and industrial practitioners in the areas of Mathematics, Physics and Chemistry as most of the topics are in line with IR 4.0.
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
One service mathematics has rendered the Et moi, .... si j'avait su comment en revenir, je human race. It has put common sense back n'y serais point aile.' where it belongs, on the topmost shelf next to Jules Verne the dusty canister labelled 'discarded nonsense'. Eric T. Bell The series is divergent; therefore we may be able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
In this book, the major ideas behind Organic Computing are delineated, together with a sparse sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.
In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids. The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics. The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium. Audience: This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena.
Recent groundbreaking discoveries in physics, including the discovery of the Higgs Boson and gravitational waves, have relied on chi-squared analysis and model testing, a data analysis method. This is the first book to make chi-squared model testing accessible to students in introductory physics lab courses and others who need to learn this method, such as beginning researchers in astrophysics and particle physics, beginners in data science, and lab students in other experimental sciences. For over a decade, Harvard University's introductory physics lab sequence has made chi-squared model testing its central theme. Written by two faculty members, the book is based on years of experience teaching students learn how to think like scientists by testing their models using chi-squared analysis. By including uncertainties in the curve fitting technique, chi-squared data analysis improves on the centuries old ordinary least squares and linear regression methods and combines best fit parameter estimation and model testing in one method. A toolkit of essential statistical and experimental concepts is developed from the ground up with novel features to interest even those familiar with the material. The presentation of one and two parameter chi-squared model testing, requiring only elementary probability and algebra, is followed by case studies that apply the methods to simple introductory physics lab experiments. More challenging topics requiring calculus are addressed in an advanced topic chapter. This self-contained and student-friendly introduction includes a glossary, end of chapter problems with complete solutions, and software scripts available in several popular programming languages that the reader can use for chi-squared model testing.
This book gives a rigorous yet 'physics-focused' introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general (rather than taking a philosophical math fundamental oriented approach that is commonly found in mathematical logic textbooks).
Systems driven far from thermodynamic equilibrium can create dissipative structures through the spontaneous breaking of symmetries. A particularlyfascinating feature of these pattern-forming systems is their tendency toproduce spatially confined states. These localized wave packets can exist as propagating entities through space and/or time. Various examples of suchsystems will be dealt with in this book, including localized states in fluids, chemical reactions on surfaces, neural networks, optical systems, granular systems, population models, and Bose-Einstein condensates. This book should appeal to all physicists, mathematicians and electrical engineers interested in localization in far-from-equilibrium systems. The authors - all recognized experts in their fields -strive to achieve a balance between theoretical and experimental considerations thereby givingan overview offascinating physical principles, their manifestations in diverse systems, and the noveltechnical applications on the horizon.
Kinetic theory is the link between the non--equilibrium statistical mechanics of many particle systems and macroscopic or phenomenological physics. Therefore much attention is paid in this book both to the derivation of kinetic equations with their limitations and generalizations on the one hand, and to the use of kinetic theory for the description of physical phenomena and the calculation of transport coefficients on the other hand. The book is meant for researchers in the field, graduate students and advanced undergraduate students. At the end of each chapter a section of exercises is added not only for the purpose of providing the reader with the opportunity to test his understanding of the theory and his ability to apply it, but also to complete the chapter with relevant additions and examples that otherwise would have overburdened the main text of the preceding sections. The author is indebted to the physicists who taught him Statistical Mechanics, Kinetic Theory, Plasma Physics and Fluid Mechanics. I gratefully acknowledge the fact that much of the inspiration without which this book would not have been possible, originated from what I learned from several outstanding teachers. In particular I want to mention the late Prof. dr. H. C. Brinkman, who directed my first steps in the field of theoretical plasma physics, my thesis advisor Prof. dr. N. G. Van Kampen and Prof. dr. A. N. Kaufman, whose course on Non-Equilibrium Statistical Mechanics in Berkeley I remember with delight.
Newer Edition Available: Equilibrium Statistical Physics (3rd Edition)This revised and expanded edition of one of the important textbook in statistical physics, is a graduate level text suitable for students in physics, chemistry, and materials science.After a short review of basic concepts, the authors begin the discussion on strongly interacting condensed matter systems with a thorough treatment of mean field and Landau theories of phase transitions. Many examples are worked out in considerable detail. Classical liquids are treated next. Along with traditional approaches to the subject such as the virial expansion and integral equations, newer theories such as perturbation theory and density functional theories are introduced.The modern theory of phase transitions occupies a central place in this book. The development is along historical lines, beginning with the Onsager solution of the two-dimensional Ising model, series expansions, scaling theory, finite-size scaling, and the universality hypothesis. A separate chapter is devoted to the renormalization group approach to critical phenomena. The development of the basic tools is completed in a new chapter on computer simulations in which both Monte Carlo and molecular dynamics techniques are introduced.The remainder of the book is concerned with a discussion of some of the more important modern problems in condensed matter theory. A chapter on quantum fluids deals with Bose condensation, superfluidity, and the BCS and Landau-Ginzburg theories of superconductivity. A new chapter on polymers and membranes contains a discussion of the Gaussian and Flory models of dilute polymer mixtures, the connection of polymer theory to critical phenomena, a discussion of dense polymer mixtures and an introduction to the physical properties of solid and fluid membranes. A chapter on linear response includes the Kubo formalism, the fluctuation-dissipation theorem, Onsager relations and the Boltzmann equation. The last chapter is devoted to disordered materials.Each chapter contains a substantial number of exercises. A manual with a complete set of solutions to these problems is available under separate cover. |
![]() ![]() You may like...
Computer-Aided Oral and Maxillofacial…
Jan Egger, Xiaojun Chen
Paperback
R4,729
Discovery Miles 47 290
Robust Subspace Estimation Using…
Omar Oreifej, Mubarak Shah
Hardcover
R1,502
Discovery Miles 15 020
Challenges and Applications for Hand…
Lalit Kane, Bhupesh Kumar Dewangan, …
Hardcover
R5,784
Discovery Miles 57 840
Research Developments in Biometrics and…
Rajeev Srivastava, S.K. Singh, …
Hardcover
R5,244
Discovery Miles 52 440
Functional Brain-Heart Interplay - From…
Vincenzo Catrambone, Gaetano Valenza
Hardcover
R3,896
Discovery Miles 38 960
Visual Perception for Humanoid Robots…
David Israel Gonzalez Aguirre
Hardcover
R2,893
Discovery Miles 28 930
Face Recognition in Adverse Conditions
Maria De Marsico, Michele Nappi, …
Hardcover
R6,464
Discovery Miles 64 640
|