![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics > Statistical physics
Microcontinuum Field Theories constitutes an extension of classical field theories - of elastic solids, viscous fluids, electromagnetism, and the like - to microscopic length and time scales. Material bodies are viewed as collections of a large number of deformable particles (sub-continua), suitable for modeling blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume extends and applies the ideas developed in the first volume, Microcontinuum Field Theories: Foundations and Solids, to liquid crystals, biological fluids, and other microstretch and micomorphic fluids. The theory makes it possible to discuss properties of such materials that are beyond the scope of classical field theories and may provide a basis for the resolution of some outstanding problems, such as turbulence.
This textbook offers an advanced undergraduate or initial graduate level introduction to topics such as kinetic theory, equilibrium statistical mechanics and the theory of fluctuations from a modern perspective. The aim is to provide the reader with the necessary tools of probability theory and thermodynamics (especially the thermodynamic potentials) to enable subsequent study at advanced graduate level. At the same time, the book offers a bird's eye view on arguments that are often disregarded in the main curriculum courses. Further features include a focus on the interdisciplinary nature of the subject and in-depth discussion of alternative interpretations of the concept of entropy. While some familiarity with basic concepts of thermodynamics and probability theory is assumed, this does not extend beyond what is commonly obtained in basic undergraduate curriculum courses.
Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields.
This is the first unified treatment of the properties of
thermodynamically open and closed systems. It provides the theory
and methodology that are necessary to understand nonlinear
processes. The section on Classical Systems covers topics ranging
from the evolution of probability to open and closed systems and
non-Hamiltonian systems. The concluding section on Quantum Systems
is equally detailed, treating the evolution of quantum systems,
c-number fluctuations and operator fluctuations.
Based on courses given at the universities of Texas and California, this book treats an active field of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature; while problems at the ends of chapters help students clarify their understanding. This new edition has an updated presentation throughout, and a new chapter on open quantum systems.
Many students at undergraduate level struggle with the basic concepts of thermodynamics and statistical physics such as entropy, phase space, y-space, micro-canonical, canonical and grand canonical ensembles, statistical weight (thermodynamic probability), accessible states, density of states, partition function. In this book the author has made every effort to explain these basic concepts and notions in the simplest possible way, keeping in mind the limitations and difficulties of an average student. The book begins with the kinetic theory of gases and transport phenomena and gives the students a thorough grounding in the fundamental aspects of the topics such as Maxwell's law of distribution of molecular speeds, mean free path, viscosity, thermal conduction and diffusion. Next, the topics on equation of state and critical constant are discussed. The chapters from 4 - 9 are devoted to the development of thermodynamic concepts and the application of the laws of thermodynamics to the thermodynamic processes. A sufficient number of solved examples enable the students to test their conceptual understanding and analytical skills. A comprehensive discussion of on the failure of classical theory of radiation and the emergence of quantum concepts viz. the particle nature of radiation is presented in the chapters on radiations. Part II of the book presents a lucid and systematic exposition of the fundamental principles of the most fascinating, exciting, stimulating and challenging subject - statistical physics. The understanding of statistical physics requires knowledge of quantum mechanics at introductory level and a little bit of mathematics of undergraduate level. Though this book provides a self-contained study material, the knowledge of more advanced mathematical tools will make the learning process of statistical physics easier.
In the 1970s F. Calogero and D. Sutherland discovered that for certain potentials in one-dimensional systems, but for any number of particles, the Schrödinger eigenvalue problem is exactly solvable. Until then, there was only one known nontrivial example of an exactly solvable quantum multi-particle problem. J. Moser subsequently showed that the classical counterparts to these models is also amenable to an exact analytical approach. The last decade has witnessed a true explosion of activities involving Calogero-Moser-Sutherland models, and these now play a role in research areas ranging from theoretical physics (such as soliton theory, quantum field theory, string theory, solvable models of statistical mechanics, condensed matter physics, and quantum chaos) to pure mathematics (such as representation theory, harmonic analysis, theory of special functions, combinatorics of symmetric functions, dynamical systems, random matrix theory, and complex geometry). The aim of this volume is to provide an overview of the many branches into which research on CMS systems has diversified in recent years. The contributions are by leading researchers from various disciplines in whose work CMS systems appear, either as the topic of investigation itself or as a tool for further applications.
The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, researchers and practitioners in the area of soft computing, systems modeling and control.
This is a textbook which gradually introduces the student to the statistical mechanical study of the different phases of matter and to the phase transitions between them. Throughout, only simple models of both ordinary and soft matter are used but these are studied in full detail. The subject is developed in a pedagogical manner, starting from the basics, going from the simple ideal systems to the interacting systems, and ending with the more modern topics. The textbook provides the student with a complete overview, intentionally at an introductory level, of the theory of phase transitions. All equations and deductions are included.
The main body of this book is devoted to statistical physics, whereas much less emphasis is given to thermodynamics. In particular, the idea is to present the most important outcomes of thermodynamics - most notably, the laws of thermodynamics - as conclusions from derivations in statistical physics. Special emphasis is on subjects that are vital to engineering education. These include, first of all, quantum statistics, like the Fermi-Dirac distribution, as well as diffusion processes, both of which are fundamental to a sound understanding of semiconductor devices. Another important issue for electrical engineering students is understanding of the mechanisms of noise generation and stochastic dynamics in physical systems, most notably in electric circuitry. Accordingly, the fluctuation-dissipation theorem of statistical mechanics, which is the theoretical basis for understanding thermal noise processes in systems, is presented from a signals-and-systems point of view, in a way that is readily accessible for engineering students and in relation with other courses in the electrical engineering curriculum, like courses on random processes.
The purpose of this book is to thoroughly prepare the reader for
research in string theory at an intermediate level. As such it is
not a compendium of results but intended as textbook in the sense
that most of the material is organized in a pedagogical and
self-contained fashion.
Since 1950, the "Highway Capacity Manual" has been a standard used in the planning, design, analysis and operation of virtually any highway traffic facility in the United States. It has also been widely used abroad and has spurred the development of similar manuals in other countries. The twin concepts of capacity and level of service have been developed in the manual and methodologies have been presented that allow highway traffic facilities to be designed on a common basis and allow for the analysis of operational quality under various traffic demand scenarios. The manual also addresses related pedestrian, bicycle and transit issues. There have been five full editions of the "Highway Capacity Manual" 1950, 1975, 1985, 2000 and 2010, with interim updates in 1994 and 1997. The manual has a rich conceptual and research history that should be understood both by users of the manual and by those who contribute to it through basic research and development of methodologies.I has become increasingly complex, as our understanding of complex interactions among drivers, vehicles and roadways improves. Through it all, there are common threads of understanding that have not changed a great deal since 1950. This book details the fundamental development of the concepts of capacity and level of service and of the specific methodologies developed to describe them over a wide range of facility types.The book is comprised of two volumes.Volume 1 (this book) focuses on the development of basic principles and their application to uninterrupted flow facilities: freeways, multilane highways and two-lane highways. Weaving, merging and diverging segments on freeways and multilane highways are also discussed in detail. Volume 2 (expected to be completed in late 2014) focuses on interrupted flow facilities: signalized and unsignalized intersections, urban streets and arterials. It is intended to help users of the manual understand how concepts, approaches and specific methodologies were developed and to understand the underlying principles that each embodies.It is also intended to act as a basic reference for current and future researchers who will continue to develop new and improved capacity analysis methodologies for many years to come."
These proceedings comprise invited and contributed papers presented at PLMMP-2014, addressing modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The book focuses on state-of-the-art developments in contemporary physics of liquid matter. The papers presented here are organized into four parts: (i) structure of liquids in confined systems, (ii) phase transitions, supercritical liquids and glasses, (iii) colloids, and (iv) medical and biological aspects and cover the most recent developments in the broader field of liquid state including interdisciplinary problems.
In this book, the equilibrium and nonequilibrium properties of continuous phase transitions are studied in various systems, with a special emphasis on understanding how well-established universal traits at equilibrium may be extended into the dynamic realm, going beyond the paradigmatic Kibble-Zurek mechanism of defect formation. This book reports on the existence of a quantum phase transition in a system comprising just a single spin and a bosonic mode (the quantum Rabi model). Though critical phenomena are inherent to many-body physics, the author demonstrates that this small and ostensibly simple system allows us to explore the rich phenomenology of phase transitions, both in- and out-of-equilibrium. Moreover, the universal traits of this quantum phase transition may be realized in a single trapped-ion experiment, thus avoiding the need to scale up the number of constituents. In this system, the phase transition takes place in a suitable limit of system parameters rather than in the conventional thermodynamic limit - a novel notion that the author and his collaborators have dubbed the finite-component system phase transition. As such, the results gathered in this book will open promising new avenues in our understanding and exploration of quantum critical phenomena.
This volume is the third edition of the first-ever elementary book on the Langevin equation method for the solution of problems involving the translational and rotational Brownian motion of particles and spins in a potential highlighting modern applications in physics, chemistry, electrical engineering, and so on. In order to improve the presentation, to accommodate all the new developments, and to appeal to the specialized interests of the various communities involved, the book has been extensively rewritten and a very large amount of new material has been added. This has been done in order to present a comprehensive overview of the subject emphasizing via a synergetic approach that seemingly unrelated physical problems involving random noise may be described using virtually identical mathematical methods in the spirit of the founders of the subject, viz., Einstein, Langevin, Smoluchowski, Kramers, etc. The book has been written in such a way that all the material should be accessible both to an advanced researcher and a beginning graduate student. It draws together, in a coherent fashion, a variety of results which have hitherto been available only in the form of scattered research papers and review articles.
This book presents mathematical models of mob control with threshold (conformity) collective decision-making of the agents. Based on the results of analysis of the interconnection between the micro- and macromodels of active network structures, it considers the static (deterministic, stochastic and game-theoretic) and dynamic (discrete- and continuous-time) models of mob control, and highlights models of informational confrontation. Many of the results are applicable not only to mob control problems, but also to control problems arising in social groups, online social networks, etc. Aimed at researchers and practitioners, it is also a valuable resource for undergraduate and postgraduate students as well as doctoral candidates specializing in the field of collective behavior modeling.
This book mainly investigates the precision predictions on the signal of new physics at the Large Hadron Collider (LHC) in the perturbative Quantum Chromodynamics (QCD) scheme. The potential of the LHC to discover the signal of dark matter associated production with a photon is studied after including next-to-leading order QCD corrections. The factorization and resummation of t-channel top quark transverse momentum distribution in the standard model at both the Tevatron and the LHC with soft-collinear effective theory are presented. The potential of the early LHC to discover the signal of monotops is discussed. These examples illustrate the method of searching for new physics beyond what is known today with high precision.
The author develops a new perturbative formalism of non-equilibrium thermal quantum field theory for non-homogeneous backgrounds. As a result of this formulation, the author is able to show how so-called pinch singularities can be removed, without resorting to ad hoc prescriptions, or effective resummations of absorptive effects. Thus, the author arrives at a diagrammatic approach to non-equilibrium field theory, built from modified Feynman rules that are manifestly time-dependent from tree level. This new formulation provides an alternative framework in which to derive master time evolution equations for physically meaningful particle number densities, which are valid to all orders in perturbation theory and to all orders in gradient expansion. Once truncated in a loop-wise sense, these evolution equations capture non-equilibrium dynamics on all time-scales, systematically describing energy-violating processes and the non-Markovian evolution of memory effects
Many fundamental issues in classical condensed matter physics can be addressed experimentally using systems of individually visible mesoscopic particles playing the role of "proxy atoms". The interaction between such "atoms" is determined by the properties of the surrounding medium and/or by external tuning. The best-known examples of such experimental model systems are two different domains of soft matter - complex plasmas and colloidal dispersions.The major goal of this book - written by scientists representing both complex plasmas and colloidal dispersions - is to bring the two fields together. In the first part of the book the basic properties of the two systems are summarized, demonstrating huge conceptual and methodological overlap of the fields and emphasizing numerous cross-connections between them and their essential complementarity. This "introductory part" should serve to help each community in understanding the other field better. Simultaneously, this provides the necessary basis for the second part focused on particle-resolved studies of diverse generic phenomena in liquids and solids - all performed with complex plasmas and/or colloidal dispersions. The book is concluded with the discussion of critical open issues and fascinating perspectives of such interdisciplinary research.
This book presents the proceedings of the "5th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems (CCS)." All Symposia in the series bring together scientists, engineers, economists and social scientists, creating a vivid forum for discussions on the latest insights and findings obtained in the areas of complexity, nonlinear dynamics and chaos theory, as well as their interdisciplinary applications. The scope of the latest Symposium was enriched with a variety of contemporary, interdisciplinary topics, including but not limited to: fundamental theory of nonlinear dynamics, networks, circuits, systems, biology, evolution and ecology, fractals and pattern formation, nonlinear time series analysis, neural networks, sociophysics and econophysics, complexity management and global systems.
This book demonstrates how mathematical methods and techniques can be used in synergy and create a new way of looking at complex systems. It becomes clear nowadays that the standard (graph-based) network approach, in which observable events and transportation hubs are represented by nodes and relations between them are represented by edges, fails to describe the important properties of complex systems, capture the dependence between their scales, and anticipate their future developments. Therefore, authors in this book discuss the new generalized theories capable to describe a complex nexus of dependences in multi-level complex systems and to effectively engineer their important functions. The collection of works devoted to the memory of Professor Valentin Afraimovich introduces new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to molecular biology, genetics, neurosciences, artificial intelligence as well as classic problems in physics, machine learning, brain and urban dynamics. The book can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, urban planners, and even musicians (with some mathematical background).
This dissertation contributes to the understanding of fundamental
issues in the highly interdisciplinary field of colloidal science.
Beyond colloid science, the system also serves as a model for
studying interactions in biological matter.
The celebrated Parisi solution of the Sherrington-Kirkpatrick model for spin glasses is one of the most important achievements in the field of disordered systems. Over the last three decades, through the efforts of theoretical physicists and mathematicians, the essential aspects of the Parisi solution were clarified and proved mathematically. The core ideas of the theory that emerged are the subject of this book, including the recent solution of the Parisi ultrametricity conjecture and a conceptually simple proof of the Parisi formula for the free energy. The treatment is self-contained and should be accessible to graduate students with a background in probability theory, with no prior knowledge of spin glasses. The methods involved in the analysis of the Sherrington-Kirkpatrick model also serve as a good illustration of such classical topics in probability as the Gaussian interpolation and concentration of measure, Poisson processes, and representation results for exchangeable arrays.
This book is useful to engineers, researchers, entrepreneurs, and students in different branches of production, engineering, and systems sciences. The polytopic roadmaps are the guidelines inspired by the development stages of cognitive-intelligent systems, and expected to become powerful instruments releasing an abundance of new capabilities and structures for complex engineering systems implementation. The 4D approach developed in previous monographs and correlated with industry 4.0and Fourth Industrial Revolution is continued here toward higher dimensions approaches correlated with polytopic operations, equipment, technologies, industries, and societies. Methodology emphasizes the role of doubling, iteration, dimensionality, and cyclicality around the center, of periodic tables and of conservative and exploratory strategies. Partitions, permutations, classifications, and complexification, as polytopic chemistry, are the elementary operations analyzed. Multi-scale transfer, cyclic operations, conveyors, and assembly lines are the practical examples of operations and equipment. Polytopic flow sheets, online analytical processing, polytopic engineering designs, and reality-inspired engineering are presented. Innovative concepts such as Industry 5.0, polytopic industry, Society 5.0, polytopic society, cyber physical social systems, industrial Internet, and digital twins have been discussed. The general polytopic roadmaps, (GPTR), are proposed as universal guidelines and as common methodologies to synthesize the systemic thinking and capabilities for growing complexity projects implementation.
The monograph discusses models of synthetic protocells, which are cell-like structures obtained from non-living matter endowed with some rudimentary kind of metabolism and genetics, but much simpler than biological cells. They should grow and proliferate, generating offsprings that resemble in some way the parent protocells with some variation, so that selection may take place. Sustainable protocell populations have not yet been obtained experimentally and mathematical models are therefore extremely important to address key questions concerning their synthesis and behavior. Different protocell "architectures" have been proposed and high-level abstract models like those that are presented in this book are particularly relevant to gain a better understanding of the different properites. These models are able to treat all the major dynamical phenomena in a unified framework, so they can be seen as "virtual laboratories" for protocell research. Particular attention is paid to the problem of synchronization of the fission rate of the whole protocell and the duplication rate of its "protogenetic" material, which is shown to be an emergent property that spontaneously develops in successive generations. The book is of interest for a broad range of scientists working in soft matter physics, chemistry and biology, interested in the role protocells may play on the development of new technologies with medical, environmental and industrial applications as well as scientists interested in the origin of life. |
![]() ![]() You may like...
Air Pollution Modeling and its…
Clemens Mensink, Volker Matthias
Hardcover
R5,762
Discovery Miles 57 620
Mystery Of Time, The: Asymmetry Of Time…
Alexander L Kuzemsky
Hardcover
R4,179
Discovery Miles 41 790
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,865
Discovery Miles 18 650
Corruption Networks - Concepts and…
Oscar M. Granados, Jose R. Nicolas-Carlock
Hardcover
R3,680
Discovery Miles 36 800
Feedback Economics - Economic Modeling…
Robert Y. Cavana, Brian C. Dangerfield, …
Hardcover
Integrability, Supersymmetry and…
Sengul Kuru, Javier Negro, …
Hardcover
R3,004
Discovery Miles 30 040
|