Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
One of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950 s and the engineering applications of stochastic processes in the 1940 s provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations. * A systematic treatment of stochastic structural dynamics applying the finite element methods * Highly illustrated throughout and aimed at advanced and specialist levels, it focuses on computational aspects instead of theory * Emphasizes results mainly in the time domain with limited contents in the time-frequency domain * Presents and illustrates direction integration methods for analyzing the statistics of the response of linear and nonlinear structures to stochastic loads Under Author Information - one change of word to existing text: He is a Fellow of the American Society of Mechanical Engineers (ASME)...
In recent years, random variables and stochastic processes have emerged as important factors in predicting outcomes in virtually every field of applied and social science. Ironically, according to Nicolas Bouleau and Dominique Lepingle, the presence of randomness in the model sometimes leads engineers to accept crude mathematical treatments that produce inaccurate results. The purpose of Numerical Methods for Stochastic Processes is to add greater rigor to numerical treatment of stochastic processes so that they produce results that can be relied upon when making decisions and assessing risks. Based on a postgraduate course given by the authors at Paris 6 University, the text emphasizes simulation methods, which can now be implemented with specialized computer programs. Specifically presented are the Monte Carlo and shift methods, which use an "imitation of randomness" and have a wide range of applications, and the so-called quasi-Monte Carlo methods, which are rigorous but less widely applicable. Offering a broad introduction to the field, this book presents the current state of the main methods and ideas and the cases for which they have been proved. Nevertheless, the authors do explore problems raised by these newer methods and suggest areas in which further research is needed. Extensive notes and a full bibliography give interested readers the option of delving deeper into stochastic numerical analysis. For professional statisticians, engineers, and physical and social scientists, Numerical Methods for Stochastic Processes provides both the theoretical background and the necessary practical tools to improve predictions based on randomness in the model. With its exercises andbroad-spectrum coverage, it is also an excellent textbook for introductory graduate-level courses in stochastic process mathematics.
This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instils a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.
The monograph is devoted to an investigation of co-operative effects in stochastic models. It includes original results of the authors in the last decade. The main object of the monograph is an analysis of an influence of a stochastic model structure on its characteristics. Problems of a co-operation and a decomposition are actual in a solution of a lot of concrete problems. These problems are: a parallelisation of algorithms and programs, a modelling of supercomputers, computer networks, systems of mobile telephones catastrophes in complex systems, a design and an improvement of technological and economical processes etc. The co-operative effects create a source of significant dependencies between complex system characteristics under large random disturbances. To analyse these effects is necessary to create special methods based on structural analysis of multi-element stochastic models together with majoral asymptotic bounds of these models characteristics. At the same time it demands to develop new approaches to a processing of statistical data and a skill in an usage of the probability theory limit theorems and related asymptotic series and bounds. A choice of the monograph material is defined as by initial applied problems so by probability methods of their solution. Conditionally the monograph may be divided into two parts. First of them contains four sections devoted to a finding of the co-operative effects and to a development of new related analytical and numerical methods. This part has presumably methodological character and creates a theoretical base of an investigation of applied stochastic systems. Second part contains three sections devoted to a solution of different applied problems. It has some interesting substantial results.
A 'stochastic' process is a 'random' or 'conjectural' process, and
this book is concerned with applied probability and statistics.
Whilst maintaining the mathematical rigour this subject requires,
it addresses topics of interest to engineers, such as problems in
modelling, control, reliability maintenance, data analysis and
engineering involvement with insurance.
Wiley-Interscience Series in Discrete Mathematics and Optimization Advisory Editors Ronald L. Graham Jan Karel Lenstra Robert E. Tarjan Discrete Mathematics and Optimization involves the study of finite structures. It is one of the fastest growing areas in mathematics today. The level and depth of recent advances in the area and the wide applicability of its evolving techniques point to the rapidity with which the field is moving from its beginnings to maturity and presage the ever-increasing interaction between it and computer science. The Series provides a broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, mathematical programming and the analysis of algorithms, and including such topics as Ramsey theory, transversal theory, block designs, finite geometries, Polya theory, graph and matroid algorithms, network flows, polyhedral combinatorics and computational complexity. The Wiley - Interscience Series in Discrete Mathematics and Optimization will be a substantial part of the record of this extraordinary development. Recent titles in the Series: Search Problems Rudolf Ahlswede, University of Bielefeld, Federal Republic of Germany Ingo Wegener, Johann Wolfgang Goethe University, Frankfurt, Federal Republic of Germany The problems of search, exploration, discovery and identification are of key importance in a wide variety of applications. This book will be of great interest to all those concerned with searching, sorting, information processing, design of experiments and optimal allocation of resources. 1987 Introduction to Optimization E. M. L. Beale FRS, Scicon Ltd, Milton Keynes, and Imperial College, London This book is intended as an introduction to the many topics covered by the term 'optimization', with special emphasis on applications in industry. It is divided into three parts. The first part covers unconstrained optimization, the second describes the methods used to solve linear programming problems, and the third covers nonlinear programming, integer programming and dynamic programming. The book is intended for senior undergraduate and graduate students studying optimization as part of a course in mathematics, computer science or engineering. 1988
Stochastic calculus provides a powerful description of a specific class of stochastic processes in physics and finance. However, many econophysicists struggle to understand it. This book presents the subject simply and systematically, giving graduate students and practitioners a better understanding and enabling them to apply the methods in practice. The book develops Ito calculus and Fokker-Planck equations as parallel approaches to stochastic processes, using those methods in a unified way. The focus is on nonstationary processes, and statistical ensembles are emphasized in time series analysis. Stochastic calculus is developed using general martingales. Scaling and fat tails are presented via diffusive models. Fractional Brownian motion is thoroughly analyzed and contrasted with Ito processes. The Chapman-Kolmogorov and Fokker-Planck equations are shown in theory and by example to be more general than a Markov process. The book also presents new ideas in financial economics and a critical survey of econometrics.
From classical foundations to advanced modern theory, this self-contained and comprehensive guide to probability weaves together mathematical proofs, historical context and richly detailed illustrative applications. A theorem discovery approach is used throughout, setting each proof within its historical setting and is accompanied by a consistent emphasis on elementary methods of proof. Each topic is presented in a modular framework, combining fundamental concepts with worked examples, problems and digressions which, although mathematically rigorous, require no specialised or advanced mathematical background. Augmenting this core material are over 80 richly embellished practical applications of probability theory, drawn from a broad spectrum of areas both classical and modern, each tailor-made to illustrate the magnificent scope of the formal results. Providing a solid grounding in practical probability, without sacrificing mathematical rigour or historical richness, this insightful book is a fascinating reference and essential resource, for all engineers, computer scientists and mathematicians.
Covering point process theory, random geometric graphs and coverage processes, this rigorous introduction to stochastic geometry will enable you to obtain powerful, general estimates and bounds of wireless network performance and make good design choices for future wireless architectures and protocols that efficiently manage interference effects. Practical engineering applications are integrated with mathematical theory, with an understanding of probability the only prerequisite. At the same time, stochastic geometry is connected to percolation theory and the theory of random geometric graphs and accompanied by a brief introduction to the R statistical computing language. Combining theory and hands-on analytical techniques with practical examples and exercises, this is a comprehensive guide to the spatial stochastic models essential for modelling and analysis of wireless network performance.
Stochastic Methods for Flow in Porous Media: Coping with
Uncertainties explores fluid flow in complex geologic environments.
The parameterization of uncertainty into flow models is important
for managing water resources, preserving subsurface water quality,
storing energy and wastes, and improving the safety and economics
of extracting subsurface mineral and energy resources. * As never seen before:
Targeted at graduate students, researchers and practitioners in the field of science and engineering, this book gives a self-contained introduction to a measure-theoretic framework in laying out the definitions and basic concepts of random variables and stochastic diffusion processes. It then continues to weave into a framework of several practical tools and applications involving stochastic dynamical systems. These include tools for the numerical integration of such dynamical systems, nonlinear stochastic filtering and generalized Bayesian update theories for solving inverse problems and a new stochastic search technique for treating a broad class of non-convex optimization problems. MATLAB (R) codes for all the applications are uploaded on the companion website.
A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics are provided, specifically to systems of random equations and condition numbers of random matrices. Throughout the book, applications are illustrated from various areas of study such as statistics, genomics, and oceanography while other results are relevant to econometrics, engineering, and mathematical physics. The presented material is reinforced by end-of-chapter exercises that range in varying degrees of difficulty. Most fundamental topics are addressed in the book, and an extensive, up-to-date bibliography directs readers to existing literature for further study. Level Sets and Extrema of Random Processes and Fields is an excellent book for courses on probability theory, spatial statistics, Gaussian fields, and probabilistic methods in real computation at the upper-undergraduate and graduate levels. It is also a valuable reference for professionals in mathematics and applied fields such as statistics, engineering, econometrics, mathematical physics, and biology.
This book gives a concise introduction to the classical theory of stochastic partial differential equations (SPDEs). It begins by describing the classes of equations which are studied later in the book, together with a list of motivating examples of SPDEs which are used in physics, population dynamics, neurophysiology, finance and signal processing. The central part of the book studies SPDEs as infinite-dimensional SDEs, based on the variational approach to PDEs. This extends both the classical Ito formulation and the martingale problem approach due to Stroock and Varadhan. The final chapter considers the solution of a space-time white noise-driven SPDE as a real-valued function of time and (one-dimensional) space. The results of J. Walsh's St Flour notes on the existence, uniqueness and Hoelder regularity of the solution are presented. In addition, conditions are given under which the solution remains nonnegative, and the Malliavin calculus is applied. Lastly, reflected SPDEs and their connection with super Brownian motion are considered. At a time when new sophisticated branches of the subject are being developed, this book will be a welcome reference on classical SPDEs for newcomers to the theory.
This book is concerned with the theory of stochastic processes and the theoretical aspects of statistics for stochastic processes. It combines classic topics such as construction of stochastic processes, associated filtrations, processes with independent increments, Gaussian processes, martingales, Markov properties, continuity and related properties of trajectories with contemporary subjects: integration with respect to Gaussian processes, Ito integration, stochastic analysis, stochastic differential equations, fractional Brownian motion and parameter estimation in diffusion models.
This book is specially designed to refresh and elevate the level of understanding of the foundational background in probability and distributional theory required to be successful in a graduate-level statistics program. Advanced undergraduate students and introductory graduate students from a variety of quantitative backgrounds will benefit from the transitional bridge that this volume offers, from a more generalized study of undergraduate mathematics and statistics to the career-focused, applied education at the graduate level. In particular, it focuses on growing fields that will be of potential interest to future M.S. and Ph.D. students, as well as advanced undergraduates heading directly into the workplace: data analytics, statistics and biostatistics, and related areas.
This is a concise and elementary introduction to stochastic control and mathematical modelling. This book is designed for researchers in stochastic control theory studying its application in mathematical economics and those in economics who are interested in mathematical theory in control. It is also a good guide for graduate students studying applied mathematics, mathematical economics, and non-linear PDE theory. Contents include the basics of analysis and probability, the theory of stochastic differential equations, variational problems, problems in optimal consumption and in optimal stopping, optimal pollution control, and solving the Hamilton-Jacobi-Bellman (HJB) equation with boundary conditions. Major mathematical prerequisites are contained in the preliminary chapters or in the appendix so that readers can proceed without referring to other materials.
Meyn & Tweedie is back The bible on Markov chains in general state spaces has been brought up to date to reflect developments in the field since 1996 - many of them sparked by publication of the first edition. The pursuit of more efficient simulation algorithms for complex Markovian models, or algorithms for computation of optimal policies for controlled Markov models, has opened new directions for research on Markov chains. As a result, new applications have emerged across a wide range of topics including optimisation, statistics, and economics. New commentary and an epilogue by Sean Meyn summarise recent developments and references have been fully updated. This second edition reflects the same discipline and style that marked out the original and helped it to become a classic: proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background.
The subject of information geometry blends several areas of statistics, computer science, physics, and mathematics. The subject evolved from the groundbreaking article published by legendary statistician C.R. Rao in 1945. His works led to the creation of Cramer-Rao bounds, Rao distance, and Rao-Blackawellization. Fisher-Rao metrics and Rao distances play a very important role in geodesics, econometric analysis to modern-day business analytics. The chapters of the book are written by experts in the field who have been promoting the field of information geometry and its applications.
In this book, the optimal transportation problem (OT) is described as a variational problem for absolutely continuous stochastic processes with fixed initial and terminal distributions. Also described is Schroedinger's problem, which is originally a variational problem for one-step random walks with fixed initial and terminal distributions. The stochastic optimal transportation problem (SOT) is then introduced as a generalization of the OT, i.e., as a variational problem for semimartingales with fixed initial and terminal distributions. An interpretation of the SOT is also stated as a generalization of Schroedinger's problem. After the brief introduction above, the fundamental results on the SOT are described: duality theorem, a sufficient condition for the problem to be finite, forward-backward stochastic differential equations (SDE) for the minimizer, and so on. The recent development of the superposition principle plays a crucial role in the SOT. A systematic method is introduced to consider two problems: one with fixed initial and terminal distributions and one with fixed marginal distributions for all times. By the zero-noise limit of the SOT, the probabilistic proofs to Monge's problem with a quadratic cost and the duality theorem for the OT are described. Also described are the Lipschitz continuity and the semiconcavity of Schroedinger's problem in marginal distributions and random variables with given marginals, respectively. As well, there is an explanation of the regularity result for the solution to Schroedinger's functional equation when the space of Borel probability measures is endowed with a strong or a weak topology, and it is shown that Schroedinger's problem can be considered a class of mean field games. The construction of stochastic processes with given marginals, called the marginal problem for stochastic processes, is discussed as an application of the SOT and the OT.
This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected.
This book studies solutions of the Polubarinova-Galin and Loewner-Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps. This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.
This book was first published in 2006. Written by two of the foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum and then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.
The theory of large deviations deals with rates at which probabilities of certain events decay as a natural parameter in the problem varies. This book, which is based on a graduate course on large deviations at the Courant Institute, focuses on three concrete sets of examples: (i) diffusions with small noise and the exit problem, (ii) large time behavior of Markov processes and their connection to the Feynman-Kac formula and the related large deviation behavior of the number of distinct sites visited by a random walk, and (iii) interacting particle systems, their scaling limits, and large deviations from their expected limits. For the most part the examples are worked out in detail, and in the process the subject of large deviations is developed. The book will give the reader a flavor of how large deviation theory can help in problems that are not posed directly in terms of large deviations. The reader is assumed to have some familiarity with probability, Markov processes, and interacting particle systems.
Building on the author's more than 35 years of teaching experience, Modeling and Analysis of Stochastic Systems, Third Edition, covers the most important classes of stochastic processes used in the modeling of diverse systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient and limiting behavior, first passage times, and cost/reward models. The third edition has been updated with several new applications, including the Google search algorithm in discrete time Markov chains, several examples from health care and finance in continuous time Markov chains, and square root staffing rule in Queuing models. More than 50 new exercises have been added to enhance its use as a course text or for self-study. The sequence of chapters and exercises has been maintained between editions, to enable those now teaching from the second edition to use the third edition. Rather than offer special tricks that work in specific problems, this book provides thorough coverage of general tools that enable the solution and analysis of stochastic models. After mastering the material in the text, readers will be well-equipped to build and analyze useful stochastic models for real-life situations.
The book provides a general introduction to the theory of large deviations and a wide overview of the metastable behaviour of stochastic dynamics. With only minimal prerequisites, the book covers all the main results and brings the reader to the most recent developments. Particular emphasis is given to the fundamental Freidlin-Wentzell results on small random perturbations of dynamical systems. Metastability is first described on physical grounds, following which more rigorous approaches to its description are developed. Many relevant examples are considered from the point of view of the so-called pathwise approach. The first part of the book develops the relevant tools including the theory of large deviations which are then used to provide a physically relevant dynamical description of metastability. Written to be accessible to graduate students, this book provides an excellent route into contemporary research. |
You may like...
Stochastic Numerical Methods - An…
Raul Toral, Pere Colet
Paperback
Modeling Uncertainty - An Examination of…
Moshe Dror, Pierre L'Ecuyer, …
Hardcover
R5,605
Discovery Miles 56 050
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,500
Discovery Miles 25 000
Optimization, Dynamics and Economic…
Engelbert J. Dockner, R.F. Hartl, …
Hardcover
R2,425
Discovery Miles 24 250
Synchronization in Infinite-Dimensional…
Igor Chueshov, Bjoern Schmalfuss
Hardcover
R3,555
Discovery Miles 35 550
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
|