![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
This graduate textbook provides a detailed introduction to the probabilistic interpretation of nonlinear potential theory, relying on the recently introduced notion of tug-of-war games with noise.The book explores both basic and more advanced constructions, carefully explaining the parallel between linear and nonlinear cases. The presentation is self-contained with many exercises, making the book suitable as a textbook for a graduate course, as well as for self-study. Extensive background and auxiliary material allow the tailoring of courses to individual student levels.
In 1967 Walter K. Hayman published 'Research Problems in Function Theory', a list of 141 problems in seven areas of function theory. In the decades following, this list was extended to include two additional areas of complex analysis, updates on progress in solving existing problems, and over 520 research problems from mathematicians worldwide. It became known as 'Hayman's List'. This Fiftieth Anniversary Edition contains the complete 'Hayman's List' for the first time in book form, along with 31 new problems by leading international mathematicians. This list has directed complex analysis research for the last half-century, and the new edition will help guide future research in the subject. The book contains up-to-date information on each problem, gathered from the international mathematics community, and where possible suggests directions for further investigation. Aimed at both early career and established researchers, this book provides the key problems and results needed to progress in the most important research questions in complex analysis, and documents the developments of the past 50 years.
The main subject of this introductory book is simple random walk on the integer lattice, with special attention to the two-dimensional case. This fascinating mathematical object is the point of departure for an intuitive and richly illustrated tour of related topics at the active edge of research. It starts with three different proofs of the recurrence of the two-dimensional walk, via direct combinatorial arguments, electrical networks, and Lyapunov functions. After reviewing some relevant potential-theoretic tools, the reader is guided toward the relatively new topic of random interlacements - which can be viewed as a 'canonical soup' of nearest-neighbour loops through infinity - again with emphasis on two dimensions. On the way, readers will visit conditioned simple random walks - which are the 'noodles' in the soup - and also discover how Poisson processes of infinite objects are constructed and review the recently introduced method of soft local times. Each chapter ends with many exercises, making it suitable for courses and independent study.
A nonmeasure theoretic introduction to stochastic processes. Considers its diverse range of applications and provides readers with probabilistic intuition and insight in thinking about problems. This revised edition contains additional material on compound Poisson random variables including an identity which can be used to efficiently compute moments; a new chapter on Poisson approximations; and coverage of the mean time spent in transient states as well as examples relating to the Gibb's sampler, the Metropolis algorithm and mean cover time in star graphs. Numerous exercises and problems have been added throughout the text.
The book is the extended and revised version of the 1st edition and is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self-containing introduction to the stochastic processes of the later studied queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part. The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems. An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences. Reviews of first edition: "The organization of the book is such that queueing models are viewed as special cases of more general stochastic processes, such as birth-death or semi-Markov processes. ... this book is a valuable addition to the queuing literature and provides instructors with a viable alternative for a textbook to be used in a one- or two-semester course on queueing models, at the upper undergraduate or beginning graduate levels." Charles Knessl, SIAM Review, Vol. 56 (1), March, 2014
This SpringerBrief deals with a class of discrete-time zero-sum Markov games with Borel state and action spaces, and possibly unbounded payoffs, under discounted and average criteria, whose state process evolves according to a stochastic difference equation. The corresponding disturbance process is an observable sequence of independent and identically distributed random variables with unknown distribution for both players. Unlike the standard case, the game is played over an infinite horizon evolving as follows. At each stage, once the players have observed the state of the game, and before choosing the actions, players 1 and 2 implement a statistical estimation process to obtain estimates of the unknown distribution. Then, independently, the players adapt their decisions to such estimators to select their actions and construct their strategies. This book presents a systematic analysis on recent developments in this kind of games. Specifically, the theoretical foundations on the procedures combining statistical estimation and control techniques for the construction of strategies of the players are introduced, with illustrative examples. In this sense, the book is an essential reference for theoretical and applied researchers in the fields of stochastic control and game theory, and their applications.
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book's closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.
The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.
Elementary treatments of Markov chains, especially those devoted to discrete-time and finite state-space theory, leave the impression that everything is smooth and easy to understand. This exposition of the works of Kolmogorov, Feller, Chung, Kato, and other mathematical luminaries, which focuses on time-continuous chains but is not so far from being elementary itself, reminds us again that the impression is false: an infinite, but denumerable, state-space is where the fun begins. If you have not heard of Blackwell's example (in which all states are instantaneous), do not understand what the minimal process is, or do not know what happens after explosion, dive right in. But beware lest you are enchanted: 'There are more spells than your commonplace magicians ever dreamed of.'
Quaternionic and Clifford analysis are an extension of complex analysis into higher dimensions. The unique starting point of Wolfgang Sproessig's work was the application of quaternionic analysis to elliptic differential equations and boundary value problems. Over the years, Clifford analysis has become a broad-based theory with a variety of applications both inside and outside of mathematics, such as higher-dimensional function theory, algebraic structures, generalized polynomials, applications of elliptic boundary value problems, wavelets, image processing, numerical and discrete analysis. The aim of this volume is to provide an essential overview of modern topics in Clifford analysis, presented by specialists in the field, and to honor the valued contributions to Clifford analysis made by Wolfgang Sproessig throughout his career.
This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.
This textbook offers a unique learning-by-doing introduction to the modern theory of partial differential equations.Through 65 fully solved problems, the book offers readers a fast but in-depth introduction to the field, covering advanced topics in microlocal analysis, including pseudo- and para-differential calculus, and the key classical equations, such as the Laplace, Schroedinger or Navier-Stokes equations. Essentially self-contained, the book begins with problems on the necessary tools from functional analysis, distributions, and the theory of functional spaces, and in each chapter the problems are preceded by a summary of the relevant results of the theory. Informed by the authors' extensive research experience and years of teaching, this book is for graduate students and researchers who wish to gain real working knowledge of the subject.
In this fascinating book, mathematician Ed Beltrami takes a close enough look at randomness to make it mysteriously disappear. The results of coin tosses, it turns out, are determined from the start, and only our incomplete knowledge makes them look random. "Random" sequences of numbers are more elusive, but Godels undecidability theorem informs us that we will never know. Those familiar with quantum indeterminacy assert that order is an illusion, and that the world is fundamentally random. Yet randomness is also an illusion. Perhaps order and randomness, like waves and particles, are only two sides of the same (tossed) coin.
The Routledge Companion to Intelligence Studies provides a broad overview of the growing field of intelligence studies. The recent growth of interest in intelligence and security studies has led to an increased demand for popular depictions of intelligence and reference works to explain the architecture and underpinnings of intelligence activity. Divided into five comprehensive sections, this Companion provides a strong survey of the cutting-edge research in the field of intelligence studies: Part I: The evolution of intelligence studies; Part II: Abstract approaches to intelligence; Part III: Historical approaches to intelligence; Part IV: Systems of intelligence; Part V: Contemporary challenges. With a broad focus on the origins, practices and nature of intelligence, the book not only addresses classical issues, but also examines topics of recent interest in security studies. The overarching aim is to reveal the rich tapestry of intelligence studies in both a sophisticated and accessible way. This Companion will be essential reading for students of intelligence studies and strategic studies, and highly recommended for students of defence studies, foreign policy, Cold War studies, diplomacy and international relations in general.
This monograph presents a rigorous mathematical framework for a linear elastic model arising from volcanology that explains deformation effects generated by inflating or deflating magma chambers in the Earth's interior. From a mathematical perspective, these modeling assumptions manifest as a boundary value problem that has long been known by researchers in volcanology, but has not, until now, been given a thorough mathematical treatment. This mathematical study gives an explicit formula for the solution of the boundary value problem which generalizes the few well-known, explicit solutions found in geophysics literature. Using two distinct analytical approaches-one involving weighted Sobolev spaces, and the other using single and double layer potentials-the well-posedness of the elastic model is proven. An Elastic Model for Volcanology will be of particular interest to mathematicians researching inverse problems, as well as geophysicists studying volcanology.
The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.
The Routledge Companion to Intelligence Studies provides a broad overview of the growing field of intelligence studies. The recent growth of interest in intelligence and security studies has led to an increased demand for popular depictions of intelligence and reference works to explain the architecture and underpinnings of intelligence activity. Divided into five comprehensive sections, this Companion provides a strong survey of the cutting-edge research in the field of intelligence studies: Part I: The evolution of intelligence studies; Part II: Abstract approaches to intelligence; Part III: Historical approaches to intelligence; Part IV: Systems of intelligence; Part V: Contemporary challenges. With a broad focus on the origins, practices and nature of intelligence, the book not only addresses classical issues, but also examines topics of recent interest in security studies. The overarching aim is to reveal the rich tapestry of intelligence studies in both a sophisticated and accessible way. This Companion will be essential reading for students of intelligence studies and strategic studies, and highly recommended for students of defence studies, foreign policy, Cold War studies, diplomacy and international relations in general.
This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Vaxjoe, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on the current research in mathematical analysis and its various interdisciplinary applications.
Yielding new insights into important market phenomena like asset price bubbles and trading constraints, this is the first textbook to present asset pricing theory using the martingale approach (and all of its extensions). Since the 1970s asset pricing theory has been studied, refined, and extended, and many different approaches can be used to present this material. Existing PhD-level books on this topic are aimed at either economics and business school students or mathematics students. While the first mostly ignore much of the research done in mathematical finance, the second emphasizes mathematical finance but does not focus on the topics of most relevance to economics and business school students. These topics are derivatives pricing and hedging (the Black-Scholes-Merton, the Heath-Jarrow-Morton, and the reduced-form credit risk models), multiple-factor models, characterizing systematic risk, portfolio optimization, market efficiency, and equilibrium (capital asset and consumption) pricing models. This book fills this gap, presenting the relevant topics from mathematical finance, but aimed at Economics and Business School students with strong mathematical backgrounds.
A beginner s guide to stochastic growth modeling The chief advantage of stochastic growth models over deterministic models is that they combine both deterministic and stochastic elements of dynamic behaviors, such as weather, natural disasters, market fluctuations, and epidemics. This makes stochastic modeling a powerful tool in the hands of practitioners in fields for which population growth is a critical determinant of outcomes. However, the background requirements for studying SDEs can be daunting for those who lack the rigorous course of study received by math majors. Designed to be accessible to readers who have had only a few courses in calculus and statistics, this book offers a comprehensive review of the mathematical essentials needed to understand and apply stochastic growth models. In addition, the book describes deterministic and stochastic applications of population growth models including logistic, generalized logistic, Gompertz, negative exponential, and linear. Ideal for students and professionals in an array of fields including economics, population studies, environmental sciences, epidemiology, engineering, finance, and the biological sciences, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: Provides precise definitions of many important terms and concepts and provides many solved example problems Highlights the interpretation of results and does not rely on a theorem-proof approach Features comprehensive chapters addressing any background deficiencies readers may have and offers a comprehensive review for those who need a mathematics refresher Emphasizes solution techniques for SDEs and their practical application to the development of stochastic population models An indispensable resource for students and practitioners with limited exposure to mathematics and statistics, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling is an excellent fit for advanced undergraduates and beginning graduate students, as well as practitioners who need a gentle introduction to SDEs. Michael J. Panik, PhD, is Professor in the Department of Economics, Barney School of Business and Public Administration at the University of Hartford in Connecticut. He received his PhD in Economics from Boston College and is a member of the American Mathematical Society, The American Statistical Association, and The Econometric Society.
The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of Hille-Yosida and Lumer-Phillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and Feller-Markov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the Riemann-Liouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.
This is the first comprehensive book on the AIMD algorithm, the most widely used method for allocating a limited resource among competing agents without centralized control. The authors offer a new approach that is based on positive switched linear systems. It is used to develop most of the main results found in the book, and fundamental results on stochastic switched nonnegative and consensus systems are derived to obtain these results. The original and best known application of the algorithm is in the context of congestion control and resource allocation on the Internet, and readers will find details of several variants of the algorithm in order of increasing complexity, including deterministic, random, linear, and nonlinear versions. In each case, stability and convergence results are derived based on unifying principles. Basic and fundamental properties of the algorithm are described, examples are used to illustrate the richness of the resulting dynamical systems, and applications are provided to show how the algorithm can be used in the context of smart cities, intelligent transportation systems, and the smart grid.
This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.
The subject of this book stands at the crossroads of ergodic theory and measurable dynamics. With an emphasis on irreversible systems, the text presents a framework of multi-resolutions tailored for the study of endomorphisms, beginning with a systematic look at the latter. This entails a whole new set of tools, often quite different from those used for the "easier" and well-documented case of automorphisms. Among them is the construction of a family of positive operators (transfer operators), arising naturally as a dual picture to that of endomorphisms. The setting (close to one initiated by S. Karlin in the context of stochastic processes) is motivated by a number of recent applications, including wavelets, multi-resolution analyses, dissipative dynamical systems, and quantum theory. The automorphism-endomorphism relationship has parallels in operator theory, where the distinction is between unitary operators in Hilbert space and more general classes of operators such as contractions. There is also a non-commutative version: While the study of automorphisms of von Neumann algebras dates back to von Neumann, the systematic study of their endomorphisms is more recent; together with the results in the main text, the book includes a review of recent related research papers, some by the co-authors and their collaborators.
This book offers an up-to-date, comprehensive coverage of stochastic dominance and its related concepts in a unified framework. A method for ordering probability distributions, stochastic dominance has grown in importance recently as a way to measure comparisons in welfare economics, inequality studies, health economics, insurance wages, and trade patterns. Whang pays particular attention to inferential methods and applications, citing and summarizing various empirical studies in order to relate the econometric methods with real applications and using computer codes to enable the practical implementation of these methods. Intuitive explanations throughout the book ensure that readers understand the basic technical tools of stochastic dominance. |
![]() ![]() You may like...
Multi-Criteria Decision-Making Sorting…
Luis Martinez Lopez, Alessio Ishizaka, …
Paperback
R3,131
Discovery Miles 31 310
Logical Methods - In Honor of Anil…
John N. Crossley, Jeffrey B. Remmel, …
Hardcover
R4,573
Discovery Miles 45 730
|