![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
The computer age has spawned a whole new discipline of Computational Physics, a branch of physics known for its dynamic nature as opposed to the more traditional branches of experimental and theoretical physics. Within the field, the topic that has "inflated" the most with the rise of the computer is that of Stochastic Simulation, more colourfully known by its distinguished proponents, Fermi, von Neumann, Metropolis, Ulam and others such as the Monte Carlo method. Kevin MacKeown's book, the ideas of which had evolved from 15 years of teaching a final year undergraduate course on Computational Physics, serves to summarise in one volume the past and latest developments of the stochastic phenomena in the context of physics. The "teaching" approach follows a less conventional one in that there is no canon to be followed in the field. Instead, the topics are chosen to give a feeling for the breadth of applications of Monte Carlo methods in physics. Substantial references to research literature are also provided. This book is an essential reference to students wishing to gain a more technical interest in the subject as a way of getting quatitative answers to a problem. The level of knowledge of physics assumed corresponds to a that of a final year undergraduate student, but postgraduate students in a number of disciplines should also find the material of value.
Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit theorem. There is an account of moment generating functions and their applications. The following three chapters are about branching processes, random walks, and continuous-time random processes such as the Poisson process. The final chapter is a fairly extensive account of Markov chains in discrete time. This second edition develops the success of the first edition through an updated presentation, the extensive new chapter on Markov chains, and a number of new sections to ensure comprehensive coverage of the syllabi at major universities.
This book deals with current developments in stochastic analysis and its interfaces with partial differential equations, dynamical systems, mathematical physics, differential geometry, and infinite-dimensional analysis. The origins of stochastic analysis can be found in Norbert Wiener's construction of Brownian motion and Kiyosi Ito's subsequent development of stochastic integration and the closely related theory of stochastic (ordinary) differential equations. The papers in this volume indicate the great strides that have been made in recent years, exhibiting the tremendous power and diversity of stochastic analysis while giving a clear indication of the unsolved problems and possible future directions for development. The collection represents the proceedings of the AMS Summer Research Institute on Stochastic Analysis, held in July 1993 at Comell University. Many of the papers are largely expository in character while containing new results.
This text develops an introductory and relatively simple account of the theory and application of the evolutionary type of stochastic process. Professor Bailey adopts the heuristic approach of applied mathematics and develops both theoretical principles and applied techniques simultaneously.
This is the first book to promote the use of stochastic, or random, processes to understand, model and predict our climate system. One of the most important applications of this technique is in the representation of comprehensive climate models of processes which, although crucial, are too small or fast to be explicitly modelled. The book shows how stochastic methods can lead to improvements in climate simulation and prediction, compared with more conventional bulk-formula parameterization procedures. Beginning with expositions of the relevant mathematical theory, the book moves on to describe numerous practical applications. It covers the complete range of time scales of climate variability, from seasonal to decadal, centennial, and millennial. With contributions from leading experts in climate physics, this book is invaluable to anyone working on climate models, including graduate students and researchers in the atmospheric and oceanic sciences, numerical weather forecasting, climate prediction, climate modelling, and climate change.
Dieses Buch ist eine Einfuhrung in die Variationsrechnung, die das
Ziel hat, reellwertige Funktionale zu minimieren oder zu
maximieren. Die Funktionale sind Integrale uber einem Intervall,
weshalb die dafur zulassigen Funktionen von nur einer unabhangigen
Variablen abhangen. Motiviert werden die Fragestellungen durch
viele und zum Teil auch historisch bedeutsame Beispiele.
The stability of stochastic differential equations in abstract, mainly Hilbert, spaces receives a unified treatment in this self-contained book. It covers basic theory as well as computational techniques for handling the stochastic stability of systems from mathematical, physical and biological problems. Its core material is divided into three parts devoted respectively to the stochastic stability of linear systems, non-linear systems, and time-delay systems. The focus is on stability of stochastic dynamical processes affected by white noise, which are described by partial differential equations such as the Navier-Stokes equations. A range of mathematicians and scientists, including those involved in numerical computation, will find this book useful. It is also ideal for engineers working on stochastic systems and their control, and researchers in mathematical physics or biology.
We propose results of the investigation of the problem of mean square optimal estimation of linear functionals constructed from unobserved values of stationary stochastic processes. Estimates are based on observations of the processes with additive stationary noise process. The aim of the book is to develop methods for finding the optimal estimates of the functionals in the case where some observations are missing. Formulas for computing values of the mean-square errors and the spectral characteristics of the optimal linear estimates of functionals are derived in the case of spectral certainty, where the spectral densities of the processes are exactly known. The minimax robust method of estimation is applied in the case of spectral uncertainty, where the spectral densities of the processes are not known exactly while some classes of admissible spectral densities are given. The formulas that determine the least favourable spectral densities and the minimax spectral characteristics of the optimal estimates of functionals are proposed for some special classes of admissible densities.
Stochastic calculus and stochastic differential equations play an assertive role in many applications including physics, biology, financial and actuarial modelling. Well known phenomena have been described in the past by deterministic differential equations. Due to the presence of indeterminate factors, the same phenomena can be better modelled by stochastic equations. Therefore, stochastic differential equations are more realistic to the real world than the deterministic ones. This book examines new results from different fields of interest in the wide area of stochastic differential equations and their applications.
This friendly guide is the companion you need to convert pure mathematics into understanding and facility with a host of probabilistic tools. The book provides a high-level view of probability and its most powerful applications. It begins with the basic rules of probability and quickly progresses to some of the most sophisticated modern techniques in use, including Kalman filters, Monte Carlo techniques, machine learning methods, Bayesian inference and stochastic processes. It draws on thirty years of experience in applying probabilistic methods to problems in computational science and engineering, and numerous practical examples illustrate where these techniques are used in the real world. Topics of discussion range from carbon dating to Wasserstein GANs, one of the most recent developments in Deep Learning. The underlying mathematics is presented in full, but clarity takes priority over complete rigour, making this text a starting reference source for researchers and a readable overview for students.
The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of Hille-Yosida and Lumer-Phillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and Feller-Markov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the Riemann-Liouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.
Probability theory has diverse applications in a plethora of fields, including physics, engineering, computer science, chemistry, biology and economics. This book will familiarize students with various applications of probability theory, stochastic modeling and random processes, using examples from all these disciplines and more. The reader learns via case studies and begins to recognize the sort of problems that are best tackled probabilistically. The emphasis is on conceptual understanding, the development of intuition and gaining insight, keeping technicalities to a minimum. Nevertheless, a glimpse into the depth of the topics is provided, preparing students for more specialized texts while assuming only an undergraduate-level background in mathematics. The wide range of areas covered - never before discussed together in a unified fashion - includes Markov processes and random walks, Langevin and Fokker-Planck equations, noise, generalized central limit theorem and extreme values statistics, random matrix theory and percolation theory.
This state-of-the-art account unifies material developed in journal articles over the last 35 years, with two central thrusts: It describes a broad class of system models that the authors call 'stochastic processing networks' (SPNs), which include queueing networks and bandwidth sharing networks as prominent special cases; and in that context it explains and illustrates a method for stability analysis based on fluid models. The central mathematical result is a theorem that can be paraphrased as follows: If the fluid model derived from an SPN is stable, then the SPN itself is stable. Two topics discussed in detail are (a) the derivation of fluid models by means of fluid limit analysis, and (b) stability analysis for fluid models using Lyapunov functions. With regard to applications, there are chapters devoted to max-weight and back-pressure control, proportionally fair resource allocation, data center operations, and flow management in packet networks. Geared toward researchers and graduate students in engineering and applied mathematics, especially in electrical engineering and computer science, this compact text gives readers full command of the methods.
This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained, while all the results are carefully and concisely proven. Bibliographical notes are added at the end of each chapter to provide an overview of the literature. Part I lays the foundations of the theory of Markov chain on general states-space. Part II covers the basic theory of irreducible Markov chains on general states-space, relying heavily on regeneration techniques. These two parts can serve as a text on general state-space applied Markov chain theory. Although the choice of topics is quite different from what is usually covered, where most of the emphasis is put on countable state space, a graduate student should be able to read almost all these developments without any mathematical background deeper than that needed to study countable state space (very little measure theory is required). Part III covers advanced topics on the theory of irreducible Markov chains. The emphasis is on geometric and subgeometric convergence rates and also on computable bounds. Some results appeared for a first time in a book and others are original. Part IV are selected topics on Markov chains, covering mostly hot recent developments.
This book is an introduction to both computational inverse problems and uncertainty quantification (UQ) for inverse problems. The book also presents more advanced material on Bayesian methods and UQ, including Markov chain Monte Carlo sampling methods for UQ in inverse problems. Each chapter contains MATLAB (R) code that implements the algorithms and generates the figures, as well as a large number of exercises accessible to both graduate students and researchers. Computational Uncertainty Quantification for Inverse Problems is intended for graduate students, researchers, and applied scientists. It is appropriate for courses on computational inverse problems, Bayesian methods for inverse problems, and UQ methods for inverse problems.
The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics.
Although this book was first published in 1976, it has gained new significance and renewed interest among statisticians due to the developments of modern statistical techniques such as the bootstrap, the efficacy of which can be ascertained by asymptotic expansions. This also is the only book containing a detailed treatment of various refinements of the multivariate central limit theorem (CLT), including Berry-Essen-type error bounds for probabilities of general classes of functions and sets, and asymptotic expansions for both lattice and non-lattice distributions. With meticulous care, the authors develop necessary background on weak convergence theory, Fourier analysis, geometry of convex sets, and the relationship between lattice random vectors and discrete subgroups of Rk. The formalism developed in the book has been used in the extension of the theory by Goetze and Hipp to sums of weakly dependent random vectors. This edition of the book includes a new chapter that provides an application of Stein's method of approximation to the multivariate CLT.
This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. It features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walk in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. Most results are presented with complete proofs, while some very technical matters are relegated to a Theoretical Complements section at the end of each chapter in order not to impede the flow of the material. Chapter Applications, as well as numerous extensively worked examples, illustrate important applications of the subject to various fields of science, engineering, economics, and applied mathematics. The essentials of measure theoretic probability are included in an appendix to complete some of the more technical aspects of the text.
This textbook is written as an accessible introduction to interest rate modeling and related derivatives, which have become increasingly important subjects of interest in financial mathematics. The models considered range from standard short rate to forward rate models and include more advanced topics such as the BGM model and an approach to its calibration. An elementary treatment of the pricing of caps and swaptions under forward measures is also provided, with a focus on explicit calculations and a step-by-step introduction of concepts. Each chapter is accompanied with exercises and their complete solutions, making this book suitable for advanced undergraduate or beginning graduate-level students.
This monograph presents important research results in the areas of queuing theory, risk theory, graph theory and reliability theory. The analysed stochastic network models are aggregated systems of elements in random environments. To construct and to analyse a large number of different stochastic network models it is possible by a proof of new analytical results and a construction of calculation algorithms besides of the application of cumbersome traditional techniques Such a constructive approach is in a prior detailed investigation of an algebraic model component and leads to an appearance of new original stochastic network models, algorithms and application to computer science and information technologies. Accuracy and asymptotic formulas, additional calculation algorithms have been constructed due to an introduction of control parameters into analysed models, a reduction of multi-dimensional problems to one dimensional problems, a comparative analysis, a graphic interpretation of network models, an investigation of new models characteristics, a choice of special distributions classes or principles of subsystems aggregation, proves of new statements.
This book presents both the fundamentals and the major research topics in statistical physics of systems out of equilibrium. It summarizes different approaches to describe such systems on the thermodynamic and stochastic levels, and discusses a variety of areas including reactions, anomalous kinetics, and the behavior of self-propelling particles.
Although rangelands are one of the most important ecological-economic systems on our planet, researchers thus far have paid scant attention to the study of range management from a theoretical perspective. As such, this book provides a systematic approach to the theoretical study of range management under uncertainty. In particular, the book demonstrates how the theory of stochastic processes and the techniques of stochastic modelling can be used to construct and analyse theoretical models of jointly determined rangelands and thereby shed light on the task of range management. Because specialised grazing systems involving the rotation of animals between pastures have been a major focus of range managers since the 1950s, this book pays considerable attention to questions that arise when specialised grazing systems such as short duration grazing are used to manage rangelands. Specific issues that are analysed in this book include the optimal number of paddocks in short duration grazing, the steady state distribution of animals in short duration grazing. Also, the effect of potential irreversibilities, the choice between the stocking rate and time, herding in ranch operations, and the role of time in range management, is discussed.
The papers collected here focus on probabilistic causality,
addressing topics such as the search for causal mechanisms,
epistemic and metaphysical views of causality, Bayesian nets and
causal dependence, and causation in the special sciences. Some
papers stress the statistical analysis of probabilistic data;
others address causal issues in physics, with an emphasis on
physical processes that are also probabilistic--i.e., stochastic
processes.
Intended for students and researchers, this text employs basic techniques of univariate and multivariate statistics for the analysis of time series and signals. It provides a broad collection of theorems, placing the techniques on firm theoretical ground. The techniques, which are illustrated by data analyses, are discussed in both a heuristic and a formal manner, making the book useful for both the applied and the theoretical worker. An extensive set of original exercises is included. Time Series: Data Analysis and Theory takes the Fourier transform of a stretch of time series data as the basic quantity to work with and shows the power of that approach. It considers second- and higher-order parameters and estimates them equally, thereby handling non-Gaussian series and nonlinear systems directly. The included proofs, which are generally short, are based on cumulants. |
![]() ![]() You may like...
Darwin's God - Evolution and the Problem…
Cornelius G Hunter
Hardcover
Time Series Analysis - With Applications…
Jonathan D. Cryer, Kung-Sik Chan
Hardcover
R2,742
Discovery Miles 27 420
|