![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
This volume presents the lecture notes from two courses given by Davar Khoshnevisan and Rene Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis. Rene Schilling's notes are an expanded version of his course on Levy and Levy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Levy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Levy-Ito decomposition. On the other, it identifies the infinitesimal generator of the Levy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Levy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc. In turn, Davar Khoshnevisan's course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Levy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.
This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincare inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere.
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems - as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis - will find this text to be a valuable addition to the mathematical literature.
This rigorous introduction to network science presents random graphs as models for real-world networks. Such networks have distinctive empirical properties and a wealth of new models have emerged to capture them. Classroom tested for over ten years, this text places recent advances in a unified framework to enable systematic study. Designed for a master's-level course, where students may only have a basic background in probability, the text covers such important preliminaries as convergence of random variables, probabilistic bounds, coupling, martingales, and branching processes. Building on this base - and motivated by many examples of real-world networks, including the Internet, collaboration networks, and the World Wide Web - it focuses on several important models for complex networks and investigates key properties, such as the connectivity of nodes. Numerous exercises allow students to develop intuition and experience in working with the models.
The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents: Weak convergence of stochastic processes Weak convergence in metric spaces Weak convergence on C[0, 1] and D[0, ) Central limit theorem for semi-martingales and applications Central limit theorems for dependent random variables Empirical process Bibliography
This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain Research Centre at the University of British Columbia.
This three-chapter volume concerns the distributions of certain functionals of Levy processes. The first chapter, by Makoto Maejima, surveys representations of the main sub-classes of infinitesimal distributions in terms of mappings of certain Levy processes via stochastic integration. The second chapter, by Lars Norvang Andersen, Soren Asmussen, Peter W. Glynn and Mats Pihlsgard, concerns Levy processes reflected at two barriers, where reflection is formulated a la Skorokhod. These processes can be used to model systems with a finite capacity, which is crucial in many real life situations, a most important quantity being the overflow or the loss occurring at the upper barrier. If a process is killed when crossing the boundary, a natural question concerns its lifetime. Deep formulas from fluctuation theory are the key to many classical results, which are reviewed in the third chapter by Frank Aurzada and Thomas Simon. The main part, however, discusses recent advances and developments in the setting where the process is given either by the partial sum of a random walk or the integral of a Levy process.
This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.
Multi-scale systems, involving complex interacting processes that occur over a range of temporal and spatial scales, are present in a broad range of disciplines. Several methodologies exist to retrieve this multi-scale information from a given time series; however, each method has its own limitations. This book presents the mathematical theory behind the stochastic analysis of scaling time series, including a general historical introduction to the problem of intermittency in turbulence, as well as how to implement this analysis for a range of different applications. Covering a variety of statistical methods, such as Fourier analysis and wavelet transforms, it provides readers with a thorough understanding of the techniques and when to apply them. New techniques to analyse stochastic processes, including empirical mode decomposition, are also explored. Case studies, in turbulence and ocean sciences, are used to demonstrate how these statistical methods can be applied in practice, for students and researchers.
The mathematical theory of stochastic dynamics has become an important tool in the modeling of uncertainty in many complex biological, physical, and chemical systems and in engineering applications - for example, gene regulation systems, neuronal networks, geophysical flows, climate dynamics, chemical reaction systems, nanocomposites, and communication systems. It is now understood that these systems are often subject to random influences, which can significantly impact their evolution. This book serves as a concise introductory text on stochastic dynamics for applied mathematicians and scientists. Starting from the knowledge base typical for beginning graduate students in applied mathematics, it introduces the basic tools from probability and analysis and then develops for stochastic systems the properties traditionally calculated for deterministic systems. The book's final chapter opens the door to modeling in non-Gaussian situations, typical of many real-world applications. Rich with examples, illustrations, and exercises with solutions, this book is also ideal for self-study.
This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB (R) codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.
This book was first published in 2006. Written by two of the foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum and then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.
Communication networks underpin our modern world, and provide fascinating and challenging examples of large-scale stochastic systems. Randomness arises in communication systems at many levels: for example, the initiation and termination times of calls in a telephone network, or the statistical structure of the arrival streams of packets at routers in the Internet. How can routing, flow control and connection acceptance algorithms be designed to work well in uncertain and random environments? This compact introduction illustrates how stochastic models can be used to shed light on important issues in the design and control of communication networks. It will appeal to readers with a mathematical background wishing to understand this important area of application, and to those with an engineering background who want to grasp the underlying mathematical theory. Each chapter ends with exercises and suggestions for further reading.
Communication networks underpin our modern world, and provide fascinating and challenging examples of large-scale stochastic systems. Randomness arises in communication systems at many levels: for example, the initiation and termination times of calls in a telephone network, or the statistical structure of the arrival streams of packets at routers in the Internet. How can routing, flow control and connection acceptance algorithms be designed to work well in uncertain and random environments? This compact introduction illustrates how stochastic models can be used to shed light on important issues in the design and control of communication networks. It will appeal to readers with a mathematical background wishing to understand this important area of application, and to those with an engineering background who want to grasp the underlying mathematical theory. Each chapter ends with exercises and suggestions for further reading.
These lecture notes provide an introduction to the applications of Brownian motion to analysis and more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.
In these lecture notes, we will analyze the behavior of random
walk on disordered mediaby means ofboth probabilistic and analytic
methods, and will study the scalinglimits. We will focus on the
discrete potential theory and how the theory is effectively used in
the analysis of disordered media.Thefirst few chapters of the notes
can be used as an introduction to discrete potential theory.
Stochastic scheduling is in the area of production scheduling. There is a dearth of work that analyzes the variability of schedules. In a stochastic environment, in which the processing time of a job is not known with certainty, a schedule is typically analyzed based on the expected value of a performance measure. This book addresses this problem and presents algorithms to determine the variability of a schedule under various machine configurations and objective functions. It is intended for graduate and advanced undergraduate students in manufacturing, operations management, applied mathematics, and computer science, and it is also a good reference book for practitioners. Computer software containing the algorithms is provided on an accompanying website for ease of student and user implementation.
Complexity science is the study of systems with many interdependent components. Such systems - and the self-organization and emergent phenomena they manifest - lie at the heart of many challenges of global importance. This book is a coherent introduction to the mathematical methods used to understand complexity, with plenty of examples and real-world applications. It starts with the crucial concepts of self-organization and emergence, then tackles complexity in dynamical systems using differential equations and chaos theory. Several classes of models of interacting particle systems are studied with techniques from stochastic analysis, followed by a treatment of the statistical mechanics of complex systems. Further topics include numerical analysis of PDEs, and applications of stochastic methods in economics and finance. The book concludes with introductions to space-time phases and selfish routing. The exposition is suitable for researchers, practitioners and students in complexity science and related fields at advanced undergraduate level and above.
Over the last thirty years there has been extensive use of continuous time econometric methods in macroeconomic modelling. This monograph presents a continuous time macroeconometric model of the United Kingdom incorporating stochastic trends. Its development represents a major step forward in continuous time macroeconomic modelling. The book describes the model in detail and, like earlier models, it is designed in such a way as to permit a rigorous mathematical analysis of its steady-state and stability properties, thus providing a valuable check on the capacity of the model to generate plausible long-run behaviour. The model is estimated using newly developed exact Gaussian estimation methods for continuous time econometric models incorporating unobservable stochastic trends. The book also includes discussion of the application of the model to dynamic analysis and forecasting.
Stochastic resonance has been observed in many forms of systems, and has been hotly debated by scientists for over 30 years. Applications incorporating aspects of stochastic resonance may yet prove revolutionary in fields such as distributed sensor networks, nano-electronics, and biomedical prosthetics. Ideal for researchers in fields ranging from computational neuroscience through to electronic engineering, this book addresses in detail various theoretical aspects of stochastic quantization, in the context of the suprathreshold stochastic resonance effect. Initial chapters review stochastic resonance and outline some of the controversies and debates that have surrounded it. The book then discusses suprathreshold stochastic resonance, and its extension to more general models of stochastic signal quantization. Finally, it considers various constraints and tradeoffs in the performance of stochastic quantizers, before culminating with a chapter in the application of suprathreshold stochastic resonance to the design of cochlear implants.
This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier-Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t,x) that physicists assume in their work. They rigorously prove that u(t,x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t,x) - proving, in particular, that observables f(u(t,.)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces.
This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.
This comprehensive volume on ergodic control for diffusions highlights intuition alongside technical arguments. A concise account of Markov process theory is followed by a complete development of the fundamental issues and formalisms in control of diffusions. This then leads to a comprehensive treatment of ergodic control, a problem that straddles stochastic control and the ergodic theory of Markov processes. The interplay between the probabilistic and ergodic-theoretic aspects of the problem, notably the asymptotics of empirical measures on one hand, and the analytic aspects leading to a characterization of optimality via the associated Hamilton Jacobi Bellman equation on the other, is clearly revealed. The more abstract controlled martingale problem is also presented, in addition to many other related issues and models. Assuming only graduate-level probability and analysis, the authors develop the theory in a manner that makes it accessible to users in applied mathematics, engineering, finance and operations research. |
![]() ![]() You may like...
Linear and Nonlinear Optics - Materials…
Kitsakorn Locharoenrat
Hardcover
R3,624
Discovery Miles 36 240
Computational Intelligence for Big Data…
D P Acharjya, Satchidananda Dehuri, …
Hardcover
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Challenges in Computational Statistics…
Stan Matwin, Jan Mielniczuk
Hardcover
Evanescent Waves in Optics - An…
Mario Bertolotti, Concita Sibilia, …
Hardcover
R4,268
Discovery Miles 42 680
Trends in Social Network Analysis…
Rokia Missaoui, Talel Abdessalem, …
Hardcover
R4,268
Discovery Miles 42 680
|