![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
The purpose of this book is to give a streamlined introduction to the theory of (not necessarily symmetric) Dirichlet forms on general state spaces. It includes both the analytic and the probabilistic part of the theory up to and including the construction of an associated Markov process. It is based on recent joint work of S. Albeverio and the two authors and on a one-year-course on Dirichlet forms taught by the second named author at the University of Bonn in 1990/9l. It addresses both researchers and graduate students who require a quick but complete introduction to the theory. Prerequisites are a basic course in probabil ity theory (including elementary martingale theory up to the optional sampling theorem) and a sound knowledge of measure theory (as, for example, to be found in Part I of H. Bauer B 78]). Furthermore, an elementary course on lin ear operators on Banach and Hilbert spaces (but without spectral theory) and a course on Markov processes would be helpful though most of the material needed is included here."
Stochastic Programming offers models and methods for decision problems wheresome of the data are uncertain. These models have features and structural properties which are preferably exploited by SP methods within the solution process. This work contributes to the methodology for two-stagemodels. In these models the objective function is given as an integral, whose integrand depends on a random vector, on its probability measure and on a decision. The main results of this work have been derived with the intention to ease these difficulties: After investigating duality relations for convex optimization problems with supply/demand and prices being treated as parameters, a stability criterion is stated and proves subdifferentiability of the value function. This criterion is employed for proving the existence of bilinear functions, which minorize/majorize the integrand. Additionally, these minorants/majorants support the integrand on generalized barycenters of simplicial faces of specially shaped polytopes and amount to an approach which is denoted barycentric approximation scheme.
This workshop on stochastic theory and adaptive control assembled many of the leading researchers on stochastic control and stochastic adaptive control to increase scientific exchange and cooperative research between these two subfields of stochastic analysis. The papers included in the proceedings include survey and research. They describe both theoretical results and applications of adaptive control. There are theoretical results in identification, filtering, control, adaptive control and various other related topics. Some applications to manufacturing systems, queues, networks, medicine and other topics are gien.
A bibliography on stochastic orderings. Was there a real need for it? In a time of reference databases as the MathSci or the Science Citation Index or the Social Science Citation Index the answer seems to be negative. The reason we think that this bibliog raphy might be of some use stems from the frustration that we, as workers in the field, have often experienced by finding similar results being discovered and proved over and over in different journals of different disciplines with different levels of mathematical so phistication and accuracy and most of the times without cross references. Of course it would be very unfair to blame an economist, say, for not knowing a result in mathematical physics, or vice versa, especially when the problems and the languages are so far apart that it is often difficult to recognize the analogies even after further scrutiny. We hope that collecting the references on this topic, regardless of the area of application, will be of some help, at least to pinpoint the problem. We use the term stochastic ordering in a broad sense to denote any ordering relation on a space of probability measures. Questions that can be related to the idea of stochastic orderings are as old as probability itself. Think for instance of the problem of comparing two gambles in order to decide which one is more favorable."
All the papers contained in the volume are original, fully refereed researchpapers. They represent a fairly broad spectrum of the research activity in probability theory, which was done internationally in 1990-1991, with particular emphasis on Markov processes and stochastic calculus. The latter subject keeps growing, and some important new developments, included in the volume, concern anticipative stochastic integrals, and new applications of the enlargements of filtrations to the study of zeros of martingales. FROM THE CONTENTS: R. Bass, D. Khoshnevisan: Stochastic calculus and the continuity of local times of Levy processes.- M.T. Barlow, P. Imkeller: On some sample path properties of Skorokhod integral processes.- T.S. Mountford: A critical function for the planar Brownian convex hull.- L. Dubins, M. Smorodinsky: The modified, discrete Levy transformation is Bernoulli.- M. Baxter: Markov processes on the boundary of the binary tree.- R. Abraham: Unarbre aleatoire infini associe a l'excursion brownienne.- S.E. Kuznetsov: On the existence of a dual semigroup.
The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current state of knowledge concerning single-type branching processes to a particular area of mathematical genetics: neutral evolution. The reader is assumed to be familiar with some of the concepts of probability theory, but no particular knowledge of branching processes is required. Following the advice of an anonymous referee, I have enlarged my original version of the introduction (Chapter Zero) in order to make it accessible to a larger audience. G6teborg, Sweden, November 1991.
This volume contains papers presented during a four-day Workshop that took place at Rutgers University from 29 April to 2 May, 1991. The purpose of this workshop was to promote interaction among specialists in these areas byproviding for all an up-to-date picture of current issues and outstanding problems. The topics covered include singular stochasticcontrol, queuing networks, the mathematical theory of stochastic optimization and filtering, adaptive control and the estimation for random fields and its connections with simulated annealing, statistical mechanics, and combinatorial optimization.
The four chapters of this volume, written by prominent workers in the field of adaptive processing and linear prediction, address a variety of problems, ranging from adaptive source coding to autoregressive spectral estimation. The first chapter, by T.C. Butash and L.D. Davisson, formulates the performance of an adaptive linear predictor in a series of theorems, with and without the Gaussian assumption, under the hypothesis that its coefficients are derived from either the (single) observation sequence to be predicted (dependent case) or a second, statistically independent realisation (independent case). The contribution by H.V. Poor reviews three recently developed general methodologies for designing signal predictors under nonclassical operating conditions, namely the robust predictor, the high-speed Levinson modeling, and the approximate conditional mean nonlinear predictor. W. Wax presents the key concepts and techniques for detecting, localizing and beamforming multiple narrowband sources by passive sensor arrays. Special coding algorithms and techniques based on the use of linear prediction now permit high-quality voice reproduction at remorably low bit rates. The paper by A. Gersho reviews some of the main ideas underlying the algorithms of major interest today.
There are many ways of introducing the concept of probability in classical, i. e, deter ministic, physics. This work is concerned with one approach, known as "the method of arbitrary funetionJ. " It was put forward by Poincare in 1896 and developed by Hopf in the 1930's. The idea is the following. There is always some uncertainty in our knowledge of both the initial conditions and the values of the physical constants that characterize the evolution of a physical system. A probability density may be used to describe this uncertainty. For many physical systems, dependence on the initial density washes away with time. Inthese cases, the system's position eventually converges to the same random variable, no matter what density is used to describe initial uncertainty. Hopf's results for the method of arbitrary functions are derived and extended in a unified fashion in these lecture notes. They include his work on dissipative systems subject to weak frictional forces. Most prominent among the problems he considers is his carnival wheel example, which is the first case where a probability distribution cannot be guessed from symmetry or other plausibility considerations, but has to be derived combining the actual physics with the method of arbitrary functions. Examples due to other authors, such as Poincare's law of small planets, Borel's billiards problem and Keller's coin tossing analysis are also studied using this framework. Finally, many new applications are presented."
Entropy inequalities, correlation functions, couplings between stochastic processes are powerful techniques which have been extensively used to give arigorous foundation to the theory of complex, many component systems and to its many applications in a variety of fields as physics, biology, population dynamics, economics, ... The purpose of the book is to make theseand other mathematical methods accessible to readers with a limited background in probability and physics by examining in detail a few models where the techniques emerge clearly, while extra difficulties arekept to a minimum. Lanford's method and its extension to the hierarchy of equations for the truncated correlation functions, the v-functions, are presented and applied to prove the validity of macroscopic equations forstochastic particle systems which are perturbations of the independent and of the symmetric simple exclusion processes. Entropy inequalities are discussed in the frame of the Guo-Papanicolaou-Varadhan technique and of theKipnis-Olla-Varadhan super exponential estimates, with reference to zero-range models. Discrete velocity Boltzmann equations, reaction diffusion equations and non linear parabolic equations are considered, as limits of particles models. Phase separation phenomena are discussed in the context of Glauber+Kawasaki evolutions and reaction diffusion equations. Although the emphasis is onthe mathematical aspects, the physical motivations are explained through theanalysis of the single models, without attempting, however to survey the entire subject of hydrodynamical limits.
A volume of this nature containing a collection of papers has been brought out to honour a gentleman - a friend and a colleague - whose work has, to a large extent, advanced and popularized the use of stochastic point processes. Professor Srinivasan celebrated his sixt~ first 1:!irth d~ on December 16,1990 and will be retiring as Professor of Applied Mathematics from the Indian Institute of Technolo~, Madras on June 30,1991. In view of his outstanding contributions to the theor~ and applications of stochastic processes over a time span of thirt~ ~ears, it seemed appropriate not to let his birth d~ and retirement pass unnoticed. A s~posium in his honour and the publication of the proceedings appeared to us to be the most natural and sui table ~ to mark the occasion. The Indian Societ~ for ProbabU it~ and Statistics volunteered to organize the S~posium as part of their XII Annual conference in Bomba~. We requested a number of long-time friends, colleagues and former students of Professor Srinivasan to contribute a paper preferabl~ in the area of stochastic processes and their applications. The positive response and the enthusiastic cooperation of these distinguished scientists have resulted in the present collection. The contributions to this volume are divided into four parts: Stochastic Theor~ (2 articles), P~sics (6 articles), Biolo~ (4 articles) and Operations Research (12 articles). In addition the ke~note address delivered b~ Professor Srinivasan in the S~posium is also included.
The interplay between the spectral theory of Schr-dinger operators and probabilistic considerations forms the main theme of these notes, written for the non-specialist reader and intended to provide a brief and elementaryintroduction to this field. An attempt is made to show basic ideas in statu nascendi and to follow their evaluation from simple beginnings through to more advanced results. The term "genetic" in the title refers to this proceedure. The author concentrates on 2 topics which, in the history of the subject, have been of major conceptual importance - on the one hand the Laplacian is a random medium and the left end of its spectrum (leading to large deviation problems for Brownian motion and the link to thenotion of entropy) and on the other, Schr-dinger operators with general ergodic potentials in one-dimensional space. Ideas and concepts are explained in the simplest, possible setting and by means of a few characteristic problems with heuristic arguments preceding rigorous proofs.
Since the predecessor to this volume (LNM 1186, Eds. L. Arnold, V. Wihstutz)appeared in 1986, significant progress has been made in the theory and applications of Lyapunov exponents - one of the key concepts of dynamical systems - and in particular, pronounced shifts towards nonlinear and infinite-dimensional systems and engineering applications are observable. This volume opens with an introductory survey article (Arnold/Crauel) followed by 26 original (fully refereed) research papers, some of which have in part survey character. From the Contents: L. Arnold, H. Crauel: Random Dynamical Systems.- I.Ya. Goldscheid: Lyapunov exponents and asymptotic behaviour of the product of random matrices.- Y. Peres: Analytic dependence of Lyapunov exponents on transition probabilities.- O. Knill: The upper Lyapunov exponent of Sl (2, R) cocycles: Discontinuity and the problem of positivity.- Yu.D. Latushkin, A.M. Stepin: Linear skew-product flows and semigroups of weighted composition operators.- P. Baxendale: Invariant measures for nonlinear stochastic differential equations.- Y. Kifer: Large deviationsfor random expanding maps.- P. Thieullen: Generalisation du theoreme de Pesin pour l' -entropie.- S.T. Ariaratnam, W.-C. Xie: Lyapunov exponents in stochastic structural mechanics.- F. Colonius, W. Kliemann: Lyapunov exponents of control flows.
This volume consists of 24 papers submitted for publication by the invited speakers of the IFIP International Conference on Stochastic Partial Differential Equations and their Ap- plications. Most of them are research papers, however, a few surveys written by world renowed experts are also included. The aim of the conference was to bring together mathematici- ans, physicists and engineers representing academic as well as industrial fields, interested in the theory and applica- tions of SPDE's. The field of SPDE's is one of the most dy- namically developing areas at the cross roads of several sciences. It is especially attractive for many because of its interdisciplinary character and enormous richness ofal- ready existing as well as potential applications. There were about one hundred participants registered for the conferen- ce. With rare exceptions, all of the most active researchers in the field of SPDE's throughout the world were present at the conference. The main topics for discussion at the confe- rence were: non-linear SPDE's and Markov property for random fields, modern stochastic calculuses, numerical and asympto- tic methods for SPDE's, applications of SPDE's with emphasis onnon-linear filtering, stochastic control and statistical fluid dynamics.
The DMV seminar "Stochastische Approximation und Optimierung zufalliger Systeme" was held at Blaubeuren, 28. 5. -4. 6. 1989. The goal was to give an approach to theory and application of stochas tic approximation in view of optimization problems, especially in engineering systems. These notes are based on the seminar lectures. They consist of three parts: I. Foundations of stochastic approximation (H. Walk); n. Applicational aspects of stochastic approximation (G. PHug); In. Applications to adaptation: ugorithms (L. Ljung). The prerequisites for reading this book are basic knowledge in probability, mathematical statistics, optimization. We would like to thank Prof. M. Barner and Prof. G. Fischer for the or ganization of the seminar. We also thank the participants for their cooperation and our assistants and secretaries for typing the manuscript. November 1991 L. Ljung, G. PHug, H. Walk Table of contents I Foundations of stochastic approximation (H. Walk) 1 Almost sure convergence of stochastic approximation procedures 2 2 Recursive methods for linear problems 17 3 Stochastic optimization under stochastic constraints 22 4 A learning model; recursive density estimation 27 5 Invariance principles in stochastic approximation 30 6 On the theory of large deviations 43 References for Part I 45 11 Applicational aspects of stochastic approximation (G. PHug) 7 Markovian stochastic optimization and stochastic approximation procedures 53 8 Asymptotic distributions 71 9 Stopping times 79 1O Applications of stochastic approximation methods 80 References for Part II 90 III Applications to adaptation algorithms (L."
This volume includes a selection of papers presented at the GAMM/ IFIP-Workshop on IIStochastic Optimization: Numerical Methods and ll Technical Applications , held at the Federal Armed Forces Univer- sity Munich, May 29-31, 1990. The objective of this meeting was to bring together scientists from Stochastic Programming and from those Engineering areas, where Mathematical Programming models are common tools, as e.g. Optimal structural Design, Power Dispatch, Acid Rain Abatement etc .. Hence, the aim was to discuss the effects of taking into account the in- herent randomness of some data of these problems, i.e. considering Stochastic Programming instead of Mathematical Programming models in order to get solutions being more reliable, but not more expen- sive. An international programme committe2 was formed which included H.A. Eschenauer (Germany) P. Kall (Switzerland) K. Marti (Germany, Chairman) J. Mayer (Hungary) G.I. Schueller (Austria) Although the number of participants had to be small for technical reasons, the area covered by the lectures during the workshop was rather broad. It contains theoretical insight into stochastic pro- gramming problems, new computational approaches, analyses of known solution methods, and applications in such very different technical fields as ecology, energy demands, and optimal reliability of me- chanical structures. In particular, the applied presentation also pointed to several open methodological problems.
This book contains a collection of survey papers in the areas of modelling, estimation and adaptive control of stochastic systems describing recent efforts to develop a systematic and elegant theory of identification and adaptive control. It is meant to provide a fast introduction to some of the recent achievements. The book is intended for graduate students and researchers interested in statistical problems of control in general. Students in robotics and communication will also find it valuable. Readers are expected to be familiar with the fundamentals of probability theory and stochastic processes.
The Second Silivri Workshop functioned as a short summer school and a working conference, producing lecture notes and research papers on recent developments of Stochastic Analysis on Wiener space. The topics of the lectures concern short time asymptotic problems and anticipative stochastic differential equations. Research papers are mostly extensions and applications of the techniques of anticipative stochastic calculus.
This text introduces at a moderate speed and in a thorough way the basic concepts of the theory of stochastic integrals and Ito calculus for sem i martingales. There are many reasons to study this subject. We are fascinated by the contrast between general measure theoretic arguments and concrete probabilistic problems, and by the own flavour of a new differential calculus. For the beginner, a lot of work is necessary to go through this text in detail. As areward it should enable her or hirn to study more advanced literature and to become at ease with a couple of seemingly frightening concepts. Already in this introduction, many enjoyable and useful facets of stochastic analysis show up. We start out having a glance at several elementary predecessors of the stochastic integral and sketching some ideas behind the abstract theory of semimartingale integration. Having introduced martingales and local martingales in chapters 2 - 4, the stochastic integral is defined for locally uniform limits of elementary processes in chapter S. This corresponds to the Riemann integral in one-dimensional analysis and it suffices for the study of Brownian motion and diffusion processes in the later chapters 9 and 12."
Project planning, scheduling, and control are regularly used in business and the service sector of an economy to accomplish outcomes with limited resources under critical time constraints. To aid in solving these problems, network-based planning methods have been developed that now exist in a wide variety of forms, cf. Elmaghraby (1977) and Moder et al. (1983). The so-called "classical" project networks, which are used in the network techniques CPM and PERT and which represent acyclic weighted directed graphs, are able to describe only projects whose evolution in time is uniquely specified in advance. Here every event of the project is realized exactly once during a single project execution and it is not possible to return to activities previously carried out (that is, no feedback is permitted). Many practical projects, however, do not meet those conditions. Consider, for example, a production process where some parts produced by a machine may be poorly manufactured. If an inspection shows that a part does not conform to certain specifications, it must be repaired or replaced by a new item. This means that we have to return to a preceding stage of the production process. In other words, there is feedback. Note that the result of the inspection is that a certain percentage of the parts tested do not conform. That is, there is a positive probability (strictly less than 1) that any part is defective.
This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefevre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes."
This book begins with a historical survey of `generalized inverse Gaussian laws', in which the wartime contribution of Etienne Halphen is presented for the first time. The inverse Gaussian distribution, its properties, and its implications are set in a wide perspective. The concepts of inversion and inverse natural exponential functions are presented, together with an analysis of the `Tweedie' scale, of which the Gaussian distribution is an important special case. Chapter 2 concerns the basic theory of exponential functions, focusing on the inverse Gaussian Law. Chapter 3 is devoted to various characterization results, while Chapter 4 is concerned with the construction of multivariate distributions, and the relationship to simplex distributions, combinations, and finite mixtures. Chapter 5 introduces the concept of inverse natural exponential functions and Chapter 6 presents useful statistical results. Up-to-date research is presented in the form of exercises, a special chapter on characterizations is included, and a summary of statistical issues concerning estimation and interference are provided. Research workers will find inspiration for further investigations.
In many branches of science relevant observations are taken sequentially over time. Bayesian Analysis of Time Series discusses how to use models that explain the probabilistic characteristics of these time series and then utilizes the Bayesian approach to make inferences about their parameters. This is done by taking the prior information and via Bayes theorem implementing Bayesian inferences of estimation, testing hypotheses, and prediction. The methods are demonstrated using both R and WinBUGS. The R package is primarily used to generate observations from a given time series model, while the WinBUGS packages allows one to perform a posterior analysis that provides a way to determine the characteristic of the posterior distribution of the unknown parameters. Features Presents a comprehensive introduction to the Bayesian analysis of time series. Gives many examples over a wide variety of fields including biology, agriculture, business, economics, sociology, and astronomy. Contains numerous exercises at the end of each chapter many of which use R and WinBUGS. Can be used in graduate courses in statistics and biostatistics, but is also appropriate for researchers, practitioners and consulting statisticians. About the author Lyle D. Broemeling, Ph.D., is Director of Broemeling and Associates Inc., and is a consulting biostatistician. He has been involved with academic health science centers for about 20 years and has taught and been a consultant at the University of Texas Medical Branch in Galveston, The University of Texas MD Anderson Cancer Center and the University of Texas School of Public Health. His main interest is in developing Bayesian methods for use in medical and biological problems and in authoring textbooks in statistics. His previous books for Chapman & Hall/CRC include Bayesian Biostatistics and Diagnostic Medicine, and Bayesian Methods for Agreement.
These proceedings of the workshop on quantum probability held in Heidelberg, September 26-30, 1988 contains a representative selection of research articles on quantum stochastic processes, quantum stochastic calculus, quantum noise, geometry, quantum probability, quantum central limit theorems and quantum statistical mechanics.
Based on the proceedings of the International Conference on Stochastic Partial Differential Equations and Applications-V held in Trento, Italy, this illuminating reference presents applications in filtering theory, stochastic quantization, quantum probability, and mathematical finance and identifies paths for future research in the field. Stochastic Partial Differential Equations and Applications analyzes recent developments in the study of quantum random fields, control theory, white noise, and fluid dynamics. It presents precise conditions for nontrivial and well-defined scattering, new Gaussian noise terms, models depicting the asymptotic behavior of evolution equations, and solutions to filtering dilemmas in signal processing. With contributions from more than 40 leading experts in the field, Stochastic Partial Differential Equations and Applications is an excellent resource for pure and applied mathematicians; numerical analysts; mathematical physicists; geometers; economists; probabilists; computer scientists; control, electrical, and electronics engineers; and upper-level undergraduate and graduate students in these disciplines. |
![]() ![]() You may like...
Choose Possibility - How to Master Risk…
Sukhinder Singh Cassidy
Paperback
R428
Discovery Miles 4 280
Computer Engineering and Technology…
Weixia Xu, Liquan Xiao, …
Paperback
R1,593
Discovery Miles 15 930
Complex Networks IX - Proceedings of the…
Sean Cornelius, Kate Coronges, …
Hardcover
R3,075
Discovery Miles 30 750
Agent-Based Modeling of Sustainable…
Amparo Alonso-Betanzos, Noelia Sanchez-Marono, …
Hardcover
R4,006
Discovery Miles 40 060
Insights into the Baltic and Finnic…
Helle Metslang, Miina Norvik, …
Hardcover
R1,777
Discovery Miles 17 770
Emerging Applications of Algebraic…
Mihai Putinar, Seth Sullivant
Hardcover
R3,082
Discovery Miles 30 820
|