![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
The mathematical implications of personal beliefs and values in
science and commerce Complete with fifty illustrations, Operational Subjective Statistical Methods makes an intriguing discipline accessible to professionals, students, and the interested general reader. It contains a wealth of teaching and research material, and offers profound insight into the relationship between philosophy, faith, and scientific method.
This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.
In some cases, certain coherent structures can exist in stochastic dynamic systems almost in every particular realization of random parameters describing these systems. Dynamic localization in one-dimensional dynamic systems, vortexgenesis (vortex production) in hydrodynamic flows, and phenomenon of clustering of various fields in random media (i.e., appearance of small regions with enhanced content of the field against the nearly vanishing background of this field in the remaining portion of space) are examples of such structure formation. The general methodology presented in Volume 1 is used in Volume 2 Coherent Phenomena in Stochastic Dynamic Systems to expound the theory of these phenomena in some specific fields of stochastic science, among which are hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics. The material of this volume includes particle and field clustering in the cases of scalar (density field) and vector (magnetic field) passive tracers in a random velocity field, dynamic localization of plane waves in layered random media, as well as monochromatic wave propagation and caustic structure formation in random media in terms of the scalar parabolic equation.
The dynamics of population systems cannot be understood within the framework of ordinary differential equations, which assume that the number of interacting agents is infinite. With recent advances in ecology, biochemistry and genetics it is becoming increasingly clear that real systems are in fact subject to a great deal of noise. Relevant examples include social insects competing for resources, molecules undergoing chemical reactions in a cell and a pool of genomes subject to evolution. When the population size is small, novel macroscopic phenomena can arise, which can be analyzed using the theory of stochastic processes. This thesis is centered on two unsolved problems in population dynamics: the symmetry breaking observed in foraging populations and the robustness of spatial patterns. We argue that these problems can be resolved with the help of two novel concepts: noise-induced bistable states and stochastic patterns.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled "Modern Stochastics: Theory and Applications III," held on September 10 -14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.
Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integration theory, existence and uniqueness results and stability theory. The results will be of particular interest to natural scientists and the finance community. Readers should ideally be familiar with stochastic processes and probability theory in general, as well as functional analysis and in particular the theory of operator semigroups.
This volume highlights the main results of the research performed within the network "Harmonic and Complex Analysis and its Applications" (HCAA), which was a five-year (2007-2012) European Science Foundation Programme intended to explore and to strengthen the bridge between two scientific communities: analysts with broad backgrounds in complex and harmonic analysis and mathematical physics, and specialists in physics and applied sciences. It coordinated actions for advancing harmonic and complex analysis and for expanding its application to challenging scientific problems. Particular topics considered by this Programme included conformal and quasiconformal mappings, potential theory, Banach spaces of analytic functions and their applications to the problems of fluid mechanics, conformal field theory, Hamiltonian and Lagrangian mechanics, and signal processing. This book is a collection of surveys written as a result of activities of the Programme and will be interesting and useful for professionals and novices in analysis and mathematical physics, as well as for graduate students. Browsing the volume, the reader will undoubtedly notice that, as the scope of the Programme is rather broad, there are many interrelations between the various contributions, which can be regarded as different facets of a common theme.
This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed. The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters. In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introduced in terms of chaos expansions. The main properties of the operators, which are known in the literature for the square integrable processes, are proven using the chaos expansion approach and extended for generalized and test stochastic processes. Chapter 3, Equations involving Malliavin Calculus operators, is devoted to the study of several types of stochastic differential equations that involve the operators of Malliavin calculus, introduced in the previous chapter. Fractional versions of these operators are also discussed. Finally, in Chapter 4, Applications and Numerical Approximations are discussed. Specifically, we consider the stochastic linear quadratic optimal control problem with different forms of noise disturbances, operator differential algebraic equations arising in fluid dynamics, stationary equations and fractional versions of the equations studied - applications never covered in the extant literature. Moreover, numerical validations of the method are provided for specific problems."
This book provides a comprehensive introduction to the theory of stochastic calculus and some of its applications. It is the only textbook on the subject to include more than two hundred exercises with complete solutions. After explaining the basic elements of probability, the author introduces more advanced topics such as Brownian motion, martingales and Markov processes. The core of the book covers stochastic calculus, including stochastic differential equations, the relationship to partial differential equations, numerical methods and simulation, as well as applications of stochastic processes to finance. The final chapter provides detailed solutions to all exercises, in some cases presenting various solution techniques together with a discussion of advantages and drawbacks of the methods used. Stochastic Calculus will be particularly useful to advanced undergraduate and graduate students wishing to acquire a solid understanding of the subject through the theory and exercises. Including full mathematical statements and rigorous proofs, this book is completely self-contained and suitable for lecture courses as well as self-study.
Offering a viable solution to the long-standing problem of estimating the abundance of rare, clustered populations, adaptive sampling designs are rapidly gaining prominence in the natural and social sciences as well as in other fields with inherently difficult sampling situations. In marked contrast to conventional sampling designs, in which the entire sample of units to be observed is fixed prior to the survey, adaptive sampling strategies allow for increased sampling intensity depending upon observations made during the survey. For example, in a survey to assess the abundance of a rare animal species, neighboring sites may be added to the sample whenever the species is encountered during the survey. In an epidemiological survey of a contagious or genetically linked disease, sampling intensity may be increased whenever prevalence of the disease is encountered. Written by two acknowledged experts in this emerging field, this book offers researchers their first comprehensive introduction to adaptive sampling. An ideal reference for statisticians conducting research in survey designs and spatial statistics as well as researchers working in the environmental, ecological, public health, and biomedical sciences. Adaptive Sampling:
The concept of a system as an entity in its own right has emerged with increasing force in the past few decades in, for example, the areas of electrical and control engineering, economics, ecology, urban structures, automaton theory, operational research and industry. The more definite concept of a large-scale system is implicit in these applications, but is particularly evident in fields such as the study of communication networks, computer networks and neural networks. The Wiley-Interscience Series in Systems and Optimization has been established to serve the needs of researchers in these rapidly developing fields. It is intended for works concerned with developments in quantitative systems theory, applications of such theory in areas of interest, or associated methodology. Of related interest Stochastic Programming Peter Kall, University of ZA1/4rich, Switzerland and Stein W. Wallace, University of Trondheim, Norway Stochastic Programming is the first textbook to provide a thorough and self-contained introduction to the subject. Carefully written to cover all necessary background material from both linear and non-linear programming, as well as probability theory, the book draws together the methods and techniques previously described in disparate sources. After introducing the terms and modelling issues when randomness is introduced in a deterministic mathematical programming model, the authors cover decision trees and dynamic programming, recourse problems, probabilistic constraints, preprocessing and network problems. Exercises are provided at the end of each chapter. Throughout, the emphasis is on the appropriate use of the techniques, rather than on the underlying mathematicalproofs and theories, making the book ideal for researchers and students in mathematical programming and operations research who wish to develop their skills in stochastic programming.
A systematic, self-contained treatment of the theory of stochastic differential equations in infinite dimensional spaces. Included is a discussion of Schwartz spaces of distributions in relation to probability theory and infinite dimensional stochastic analysis, as well as the random variables and stochastic processes that take values in infinite dimensional spaces.
This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincare inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere.
An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Ito, and H. P. McKean, among others. In this book, Ito discussed a case of a general Markov process with state space S and a specified point a S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m< (called the stagnancy rate). The necessary and sufficient conditions for a pair k, m was obtained so that the correspondence is precisely described. For this, Ito used, as a fundamental tool, the notion of Poisson point processes formed of all excursions of the process on S \ {a}. This theory of Ito's of Poisson point processes of excursions is indeed a breakthrough. It has been expanded and applied to more general extension problems by many succeeding researchers. Thus we may say that this lecture note by Ito is really a memorial work in the extension problems of Markov processes. Especially in Chapter 1 of this note, a general theory of Poisson point processes is given that reminds us of Ito's beautiful and impressive lectures in his day.
This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler's ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright -Fisher model, Kingman's coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and Matlab (TM).
This book introduces several topics related to linear model theory, including: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. This second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subjects and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure.
In recent years, random variables and stochastic processes have emerged as important factors in predicting outcomes in virtually every field of applied and social science. Ironically, according to Nicolas Bouleau and Dominique Lepingle, the presence of randomness in the model sometimes leads engineers to accept crude mathematical treatments that produce inaccurate results. The purpose of Numerical Methods for Stochastic Processes is to add greater rigor to numerical treatment of stochastic processes so that they produce results that can be relied upon when making decisions and assessing risks. Based on a postgraduate course given by the authors at Paris 6 University, the text emphasizes simulation methods, which can now be implemented with specialized computer programs. Specifically presented are the Monte Carlo and shift methods, which use an "imitation of randomness" and have a wide range of applications, and the so-called quasi-Monte Carlo methods, which are rigorous but less widely applicable. Offering a broad introduction to the field, this book presents the current state of the main methods and ideas and the cases for which they have been proved. Nevertheless, the authors do explore problems raised by these newer methods and suggest areas in which further research is needed. Extensive notes and a full bibliography give interested readers the option of delving deeper into stochastic numerical analysis. For professional statisticians, engineers, and physical and social scientists, Numerical Methods for Stochastic Processes provides both the theoretical background and the necessary practical tools to improve predictions based on randomness in the model. With its exercises andbroad-spectrum coverage, it is also an excellent textbook for introductory graduate-level courses in stochastic process mathematics.
This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderon-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painleve problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.
The book develops modern methods and in particular the "generic chaining" to bound stochastic processes. This methods allows in particular to get optimal bounds for Gaussian and Bernoulli processes. Applications are given to stable processes, infinitely divisible processes, matching theorems, the convergence of random Fourier series, of orthogonal series, and to functional analysis. The complete solution of a number of classical problems is given in complete detail, and an ambitious program for future research is laid out.
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.
A unified methodology for categorizing various complex objects is presented in this book. Through probability theory, novel asymptotically minimax criteria suitable for practical applications in imaging and data analysis are examined including the special cases such as the Jensen-Shannon divergence and the probabilistic neural network. An optimal approximate nearest neighbor search algorithm, which allows faster classification of databases is featured. Rough set theory, sequential analysis and granular computing are used to improve performance of the hierarchical classifiers. Practical examples in face identification (including deep neural networks), isolated commands recognition in voice control system and classification of visemes captured by the Kinect depth camera are included. This approach creates fast and accurate search procedures by using exact probability densities of applied dissimilarity measures. This book can be used as a guide for independent study and as supplementary material for a technically oriented graduate course in intelligent systems and data mining. Students and researchers interested in the theoretical and practical aspects of intelligent classification systems will find answers to: - Why conventional implementation of the naive Bayesian approach does not work well in image classification? - How to deal with insufficient performance of hierarchical classification systems? - Is it possible to prevent an exhaustive search of the nearest neighbor in a database?
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of the complex analytical models produced by the requirements of operational practice, and the simple solutions needed for implementation. The analytical models and theoretical analysis propounded in this monograph will be of benefit to academic researchers and graduate students looking at logistics and supply chain management from standpoints in operations research or industrial, manufacturing, or control engineering. The practical tools and solutions and the qualitative insights into the ideas underlying functional supply chain systems will be of similar use to readers from more industrially-based backgrounds.
Wiley-Interscience Series in Discrete Mathematics and Optimization Advisory Editors Ronald L. Graham Jan Karel Lenstra Robert E. Tarjan Discrete Mathematics and Optimization involves the study of finite structures. It is one of the fastest growing areas in mathematics today. The level and depth of recent advances in the area and the wide applicability of its evolving techniques point to the rapidity with which the field is moving from its beginnings to maturity and presage the ever-increasing interaction between it and computer science. The Series provides a broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, mathematical programming and the analysis of algorithms, and including such topics as Ramsey theory, transversal theory, block designs, finite geometries, Polya theory, graph and matroid algorithms, network flows, polyhedral combinatorics and computational complexity. The Wiley - Interscience Series in Discrete Mathematics and Optimization will be a substantial part of the record of this extraordinary development. Recent titles in the Series: Search Problems Rudolf Ahlswede, University of Bielefeld, Federal Republic of Germany Ingo Wegener, Johann Wolfgang Goethe University, Frankfurt, Federal Republic of Germany The problems of search, exploration, discovery and identification are of key importance in a wide variety of applications. This book will be of great interest to all those concerned with searching, sorting, information processing, design of experiments and optimal allocation of resources. 1987 Introduction to Optimization E. M. L. Beale FRS, Scicon Ltd, Milton Keynes, and Imperial College, London This book is intended as an introduction to the many topics covered by the term 'optimization', with special emphasis on applications in industry. It is divided into three parts. The first part covers unconstrained optimization, the second describes the methods used to solve linear programming problems, and the third covers nonlinear programming, integer programming and dynamic programming. The book is intended for senior undergraduate and graduate students studying optimization as part of a course in mathematics, computer science or engineering. 1988 |
You may like...
Stochastic Processes - Estimation…
Kaddour Najim, Enso Ikonen, …
Hardcover
R4,310
Discovery Miles 43 100
Simulation of Stochastic Processes with…
Yuriy V Kozachenko, Oleksandr O Pogorilyak, …
Hardcover
Advancements in Bayesian Methods and…
Alastair G Young, Arni S.R. Srinivasa Rao, …
Hardcover
R6,201
Discovery Miles 62 010
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
Geometry and Statistics, Volume 46
Frank Nielsen, Arni S.R. Srinivasa Rao, …
Hardcover
R6,194
Discovery Miles 61 940
Deep Learning, Volume 48
Arni S.R. Srinivasa Rao, Venu Govindaraju, …
Hardcover
R6,171
Discovery Miles 61 710
Ruin Probabilities - Smoothness, Bounds…
Yuliya Mishura, Olena Ragulina
Hardcover
R3,086
Discovery Miles 30 860
Data Science: Theory and Applications…
C.R. Rao, Arni S.R. Srinivasa Rao
Hardcover
R6,177
Discovery Miles 61 770
Hidden Link Prediction in Stochastic…
Babita Pandey, Aditya Khamparia
Hardcover
R4,843
Discovery Miles 48 430
|