![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Discusses replacement, repair, and inspection Offers estimation and statistical tests Covers accelerated life testing Explores warranty analysis manufacturing Includes service reliability
First-passage properties underlie a wide range of stochastic processes, such as diffusion-limited growth, neuron firing, and the triggering of stock options. This book provides a unified presentation of first-passage processes, which highlights its interrelations with electrostatics and the resulting powerful consequences. The author begins with a modern presentation of fundamental theory including the connection between the occupation and first-passage probabilities of a random walk, and the connection to electrostatics and current flows in resistor networks. The consequences of this theory are then developed for simple, illustrative geometries including the finite and semi-infinite intervals, fractal networks, spherical geometries and the wedge. Various applications are presented including neuron dynamics, self-organized criticality, diffusion-limited aggregation, the dynamics of spin systems, and the kinetics of diffusion-controlled reactions. Examples discussed include neuron dynamics, self-organized criticality, kinetics of spin systems, and stochastic resonance.
Recognized as a "Recommended" title by Choice for their April 2021 issue. Choice is a publishing unit at the Association of College & Research Libraries (ACR&L), a division of the American Library Association. Choice has been the acknowledged leader in the provision of objective, high-quality evaluations of nonfiction academic writing. Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
'The book remains a valuable tool both for statisticians who are already familiar with the theory of copulas and just need to develop sampling algorithms, and for practitioners who want to learn copulas and implement the simulation techniques needed to exploit the potential of copulas in applications.'Mathematical ReviewsThe book provides the background on simulating copulas and multivariate distributions in general. It unifies the scattered literature on the simulation of various families of copulas (elliptical, Archimedean, Marshall-Olkin type, etc.) as well as on different construction principles (factor models, pair-copula construction, etc.). The book is self-contained and unified in presentation and can be used as a textbook for graduate and advanced undergraduate students with a firm background in stochastics. Besides the theoretical foundation, ready-to-implement algorithms and many examples make the book a valuable tool for anyone who is applying the methodology.
Infinite Divisibility of Probability Distributions on the Real Line
reassesses classical theory and presents new developments, while
focusing on divisibility with respect to convolution or addition of
independent random variables. This definitive, example-rich text
supplies approximately 100 examples to correspond with all major
chapter topics and reviews infinite divisibility in light of the
central limit problem. It contrasts infinite divisibility with
finite divisibility, discusses the preservation of infinite
divisibility under mixing for many classes of distributions, and
investigates self-decomposability and stability on the nonnegative
reals, nonnegative integers, and the reals.
The investigation of the origin and formation of microstructures and the effect that microstructure has on the properties of materials are important issues in materials science and technology. Geometrical analysis is often the key to understanding the formation of microstructures and the resulting material properties. The authors make use of mathematical morphology, spatial statistics, image processing, stereology and stochastic geometry to analyze microstructures arising in materials science.
This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.
Game theory involves multi-person decision making and differential dynamic game theory has been widely applied to n-person decision making problems, which are stimulated by a vast number of applications. This book addresses the gap to discuss general stochastic n-person noncooperative and cooperative game theory with wide applications to control systems, signal processing systems, communication systems, managements, financial systems, and biological systems. H game strategy, n-person cooperative and noncooperative game strategy are discussed for linear and nonlinear stochastic systems along with some computational algorithms developed to efficiently solve these game strategies.
This book presents new research in probability theory using ideas from mathematical logic. It is a general study of stochastic processes on adapted probability spaces, employing the concept of similarity of stochastic processes based on the notion of adapted distribution. The authors use ideas from model theory and methods from nonstandard analysis. The construction of spaces with certain richness properties, defined by insights from model theory, becomes easy using nonstandard methods, but remains difficult or impossible without them.
This new edition of a successful, bestselling book continues to provide you with practical information on the use of statistical methods for solving real-world problems in complex industrial environments. Complete with examples from the chemical and pharmaceutical laboratory and manufacturing areas, this thoroughly updated book clearly demonstrates how to obtain reliable results by choosing the most appropriate experimental design and data evaluation methods. Unlike other books on the subject, Statistical Methods in Analytical Chemistry, Second Edition presents and solves problems in the context of a comprehensive decision-making process under GMP rules: Would you recommend the destruction of a $100,000 batch of product if one of four repeat determinations barely fails the specification limit? How would you prevent this from happening in the first place? Are you sure the calculator you are using is telling the truth? To help you control these situations, the new edition:
Statistical Methods in Analytical Chemistry, Second Edition is an excellent, one-of-a-kind resource for laboratory scientists and engineers and project managers who need to assess data reliability; QC staff, regulators, and customers who want to frame realistic requirements and specifications; as well as educators looking for real-life experiments and advanced students in chemistry and pharmaceutical science. From the reviews of Statistical Methods in Analytical Chemistry, First Edition: "This book is extremely valuable. The authors supply many very useful programs along with their source code. Thus, the user can check the authenticity of the result and gain a greater understanding of the algorithm from the code. It should be on the bookshelf of every analytical chemist. "—Applied Spectroscopy "The authors have compiled an interesting collection of data to illustrate the application of statistical methods . . . including calibrating, setting detection limits, analyzing ANOVA data, analyzing stability data, and determining the influence of error propagation." —Clinical Chemistry "The examples are taken from a chemical/pharmaceutical environment, but serve as convenient vehicles for the discussion of when to use which test, and how to make sense out of the results. While practical use of statistics is the major concern, it is put into perspective, and the reader is urged to use plausibility checks."& mdash;Journal of Chemical Education "The discussion of univariate statistical tests is one of the more thorough I have seen in this type of book.... The treatment of linear regression is also thorough, and a complete set of equations for uncertainty in the results is presented.... The bibliography is extensive and will serve as a valuable resource for those seeking more information on virtually any topic covered in the book."—Journal of American Chemical Society This book treats the application of statistics to analytical chemistry in a very practical manner. [It] integrates PC computing power, testing programs, and analytical know-how in the context of good manufacturing practice/good laboratory practice (GMP/GLP).... The book is of value in many fields of analytical chemistry and should be available in all relevant libraries." —Chemometrics and Intelligent Laboratory Systems
This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.
A path-breaking account of Markov decision processes-theory and
computation
This volume first introduces the mathematical tools necessary for understanding and working with a broad class of applied stochastic models. The toolbox includes Gaussian processes, independently scattered measures such as Gaussian white noise and Poisson random measures, stochastic integrals, compound Poisson, infinitely divisible and stable distributions and processes.Next, it illustrates general concepts by handling a transparent but rich example of a "teletraffic model". A minor tuning of a few parameters of the model leads to different workload regimes, including Wiener process, fractional Brownian motion and stable Levy process. The simplicity of the dependence mechanism used in the model enables us to get a clear understanding of long and short range dependence phenomena. The model also shows how light or heavy distribution tails lead to continuous Gaussian processes or to processes with jumps in the limiting regime. Finally, in this volume, readers will find discussions on the multivariate extensions that admit a variety of completely different applied interpretations.The reader will quickly become familiar with key concepts that form a language for many major probabilistic models of real world phenomena but are often neglected in more traditional courses of stochastic processes.
Hardbound. J. Neyman, one of the pioneers in laying the foundations of modern statistical theory, stressed the importance of stochastic processes in a paper written in 1960 in the following terms: Currently in the period of dynamic indeterminism in science, there is hardly a serious piece of research, if treated realistically, does not involve operations on stochastic processes. Arising from the need to solve practical problems, several major advances have taken place in the theory of stochastic processes and their applications. Books by Doob (1953; J. Wiley and Sons), Feller (1957, 1966; J. Wiley and Sons) and Loeve (1960; D. van Nostrand and Col., Inc.) among others, have created growing awareness and interest in the use of stochastic processes in scientific and technological studies.The literature on stochastic processes is very extensive and is distributed in several books and journals. There is a need to review the different lines of
This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.
Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications.
Stochastic Processes for Insurance and Finance offers a thorough yet accessible reference for researchers and practitioners of insurance mathematics. Building on recent and rapid developments in applied probability the authors describe in general terms models based on Markov processes, martingales and various types of point processes. Discussing frequently asked insurance questions, the authors present a coherent overview of the subject and specifically address:
The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Krakow - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing the amount of wastes produced in the ArcelorMittal Steel Plant production processes. Moreover, real input and output data of selected processes under uncertainty, mainly used in the LCA technique, have been examined. The last chapter of this monograph contains final summary. The log-normal probability distribution, widely used in risk analysis and environmental management, in order to develop a stochastic analysis of the LCA, as well as uniform distribution for stochastic approach of pollution transport in porous media has been proposed. The distributions employed in this monograph are assembled from site-specific data, data existing in the most current literature, and professional judgment."
This book presents a concise and rigorous treatment of stochastic calculus. It also gives its main applications in finance, biology and engineering. In finance, the stochastic calculus is applied to pricing options by no arbitrage. In biology, it is applied to populations' models, and in engineering it is applied to filter signal from noise. Not everything is proved, but enough proofs are given to make it a mathematically rigorous exposition. This book aims to present the theory of stochastic calculus and its applications to an audience which possesses only a basic knowledge of calculus and probability. It may be used as a textbook by graduate and advanced undergraduate students in stochastic processes, financial mathematics and engineering. It is also suitable for researchers to gain working knowledge of the subject. It contains many solved examples and exercises making it suitable for self study. In the book many of the concepts are introduced through worked-out examples, eventually leading to a complete, rigorous statement of the general result, and either a complete proof, a partial proof or a reference. Using such structure, the text will provide a mathematically literate reader with rapid introduction to the subject and its advanced applications. This book covers models in mathematical finance, biology and engineering. For mathematicians, this book can be used as a first text on stochastic calculus or as a companion to more rigorous texts by a way of examples and exercises.
Claims reserving is central to the insurance industry. Insurance
liabilities depend on a number of different risk factors which need
to be predicted accurately. This prediction of risk factors and
outstanding loss liabilities is the core for pricing insurance
products, determining the profitability of an insurance company and
for considering the financial strength (solvency) of the company.
This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic manifolds of dimensions (0,n). It is a useful reference resource for students and researchers interested in geometry, group theory, analysis and differential equations.This book is also inspiring in the emerging field of Geometric Science of Information, in particular the chapter on Symplectic G-spaces, where Jean-Louis Koszul develops Jean-Marie Souriau's tools related to the non-equivariant case of co-adjoint action on Souriau's moment map through Souriau's Cocycle, opening the door to Lie Group Machine Learning with Souriau-Fisher metric.
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
The discipline of Stochastic Processes is usually treated as a branch of mathematics, and there are plenty of books for mathematicians on the subject. Equally, there are very many books, both for statisticians and environmental scientists, on "Time Series Analysis," analysing the structure of data sequences where measurements are made at equal time-intervals and are free from "intermittent" behaviour. But this book deals with the analysis of events which occur intermittently in time and space; through a very wide range of examples drawn from many areas of environmental science in which the role of water is central, the book shows how the same analytical procedures can be applied to very many different problems. The books many examples include: analysis of time intervals between el NiAo events, frequency of dry spells, the relation between heavy rainfall and flooding, occurrences of gravel disturbance in upland trout streams which damages trout spawn deposits and the cellular structure of rainfall. The book does not aim to be an exhaustive treatment of all possible applications of stochastic process models in the environmental sciences, but should be regarded as a source book. Its aim is to encourage students and research workers to see how environmental problems can be put into a probabilistic framework, and to draw their attention to analogous problems and solutions in other fields of environmental science in which water, and the transport of material by water, is an essential characteristic. |
![]() ![]() You may like...
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
Cuito Cuanavale - 12 Months Of War That…
Fred Bridgland
Paperback
![]()
|