Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
The material accumulated and presented in this volume can be ex plained easily. At the start of my graduate studies in the early 1950s, I Grenander's (1950) thesis, and was much attracted to the came across entire subject considered there. I then began preparing for the neces sary mathematics to appreciate and possibly make some contributions to the area. Thus after a decade of learning and some publications on the way, I wanted to write a modest monograph complementing Grenander's fundamental memoir. So I took a sabbatical leave from my teaching position at the Carnegie-Mellon University, encouraged by an Air Force Grant for the purpose, and followed by a couple of years more learning opportunity at the Institute for Advanced Study to complete the project. As I progressed, the plan grew larger needing a substantial background material which was made into an independent initial volume in (1979). In its preface I said: "My intension was to present the following material as the first part of a book treating the In ference Theory of stochastic processes, but the latter account has now receded to a distant future," namely for two more decades Meanwhile, a much enlarged second edition of that early work has appeared (1995), and now I am able to present the main part of the original plan."
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled Modern Stochastics: Theory and Applications III, held on September 10 14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security."
This book focuses on the class of large-scale stochastic systems, which has dominated the attention of many academic and research groups. It discusses distributed-sensor networks, decentralized detection theory, and econometric models with integrated and decentralized policymakers.
Features Quickly and concisely builds from basic probability theory to advanced topics Suitable as a primary text for an advanced course in diffusion processes and stochastic differential equations Useful as supplementary reading across a range of topics.
Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, Introduction to Stochastic Calculus Applied to Finance, Second Edition incorporates some of these new techniques and concepts to provide an accessible, up-to-date initiation to the field. New to the Second Edition Complements on discrete models, including Rogers' approach to the fundamental theorem of asset pricing and super-replication in incomplete markets Discussions on local volatility, Dupire's formula, the change of numeraire techniques, forward measures, and the forward Libor model A new chapter on credit risk modeling An extension of the chapter on simulation with numerical experiments that illustrate variance reduction techniques and hedging strategies Additional exercises and problems Providing all of the necessary stochastic calculus theory, the authors cover many key finance topics, including martingales, arbitrage, option pricing, American and European options, the Black-Scholes model, optimal hedging, and the computer simulation of financial models. They succeed in producing a solid introduction to stochastic approaches used in the financial world.
The 1991 Seminar on Stochastic Processes was held at the University of California, Los Angeles, from March 23 through March 25, 1991. This was the eleventh in a series of annual meetings which provide researchers with the opportunity to discuss current work on stochastic processes in an informal and enjoyable atmosphere. Previous seminars were held at Northwestern University, Princeton University, the University of Florida, the University of Virginia, the University of California, San Diego, and the University of British Columbia. Following the successful format of previous years there were five invited lectures. These were given by M. Barlow, G. Lawler, P. March, D. Stroock, M. Talagrand. The enthusiasm and interest of the participants created a lively and stimulating atmosphere for the seminar. Some of the topics discussed are represented by the articles in this volume. P. J. Fitzsimmons T. M. Liggett S. C. Port Los Angeles, 1991 In Memory of Steven Orey M. CRANSTON The mathematical community has lost a cherished colleague with the passing of Steven Orey. This unique and thoughtful man has left those who knew him with many pleasant memories. He has also left us with important contributions in the development of the theory of Markov processes. As a friend and former student, I wish to take this chance to recall to those who know and introduce to those who do not a portion of his lifework.
The fundamental question of characterizing continuity and boundedness of Gaussian processes goes back to Kolmogorov. After contributions by R. Dudley and X. Fernique, it was solved by the author. This book provides an overview of "generic chaining," a completely natural variation on the ideas of Kolmogorov. It takes the reader from the first principles to the edge of current knowledge and to the open problems that remain in this domain.
The maximum principle and dynamic programming are the two most commonly used approaches in solving optimal control problems. These approaches have been developed independently. The theme of this book is to unify these two approaches, and to demonstrate that the viscosity solution theory provides the framework to unify them.
This volume contains 20 refereed research or review papers presented at the five-day Third Seminar on Stochastic Analysis, Random Fields and Applications which took place at the Centro Stefano Franscini (Monte Verit ) in Ascona, Switzerland, from September 20 to 24, 1999. The seminar focused on three topics: fundamental aspects of stochastic analysis, physical modeling, and applications to financial engineering. The third topic was the subject of a mini-symposium on stochastic methods in financial models.
Stochastic Processes: General Theory starts with the fundamental existence theorem of Kolmogorov, together with several of its extensions to stochastic processes. It treats the function theoretical aspects of processes and includes an extended account of martingales and their generalizations. Various compositions of (quasi- or semi-)martingales and their integrals are given. Here the Bochner boundedness principle plays a unifying role: a unique feature of the book. Applications to higher order stochastic differential equations and their special features are presented in detail. Stochastic processes in a manifold and multiparameter stochastic analysis are also discussed. Each of the seven chapters includes complements, exercises and extensive references: many avenues of research are suggested. The book is a completely revised and enlarged version of the author's Stochastic Processes and Integration (Noordhoff, 1979). The new title reflects the content and generality of the extensive amount of new material. Audience: Suitable as a text/reference for second year graduate classes and seminars. A knowledge of real analysis, including Lebesgue integration, is a prerequisite.
This monograph on fast stochastic simulation deals with methods of adaptive importance sampling (IS). The concept of IS is introduced and described in detail with several numerical examples in the context of rare event simulation. Adaptive simulation and system parameter optimization to achieve specified performance criteria are described. The techniques are applied to the analysis and design of radar CFAR (constant false alarm rate) detectors. Development of robust detection algorithms using ensemble - or E-CFAR processing is described. A second application treats the performance evaluation and parameter optimization of digital communication systems that cannot be handled analytically or even by using standard numerical techniques.
This monograph introduces methods for handling filtering and control problems in nonlinear stochastic systems arising from network-induced phenomena consequent on limited communication capacity. Such phenomena include communication delay, packet dropout, signal quantization or saturation, randomly occurring nonlinearities and randomly occurring uncertainties. The text is self-contained, beginning with an introduction to nonlinear stochastic systems, network-induced phenomena and filtering and control, moving through a collection of the latest research results which focuses on the three aspects of: * the state-of-the-art of nonlinear filtering and control; * recent advances in recursive filtering and sliding mode control; and * their potential for application in networked control systems, and concluding with some ideas for future research work. New concepts such as the randomly occurring uncertainty and the probability-constrained performance index are proposed to make the network models as realistic as possible. The power of combinations of such recent tools as the completing-the-square and sums-of-squares techniques, Hamilton-Jacobi-Isaacs matrix inequalities, difference linear matrix inequalities and parameter-dependent matrix inequalities is exploited in treating the mathematical and computational challenges arising from nonlinearity and stochasticity. Nonlinear Stochastic Systems with Network-Induced Phenomena establishes a unified framework of control and filtering which will be of value to academic researchers in bringing structure to problems associated with an important class of networked system and offering new means of solving them. The significance of the new concepts, models and methods presented for practical control engineering and signal processing will also make it a valuable reference for engineers dealing with nonlinear control and filtering problems.
This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Levy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Federale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields of stochastic analysis and mathematical physics. Contributors: S. Albeverio M. Arnaudon V. Bally V. Barbu H. Bessaih Z. Brzezniak K. Burdzy A.B. Cruzeiro F. Flandoli A. Kohatsu-Higa S. Mazzucchi C. Mueller J. van Neerven M. Ondrejat S. Peszat M. Veraar L. Weis J.-C. Zambrini
The articles in this volume present the state of the art in a variety of areas of discrete probability, including random walks on finite and infinite graphs, random trees, renewal sequences, Stein's method for normal approximation and Kohonen-type self-organizing maps. This volume also focuses on discrete probability and its connections with the theory of algorithms. Classical topics in discrete mathematics are represented as are expositions that condense and make readable some recent work on Markov chains, potential theory and the second moment method. This volume is suitable for mathematicians and students.
In the last five years or so there has been an important renaissance in the area of (mathematical) modeling, identification and (stochastic) control. It was the purpose of the Advanced Study Institute of which the present volume constitutes the proceedings to review recent developments in this area with par ticular emphasis on identification and filtering and to do so in such a manner that the material is accessible to a wide variety of both embryo scientists and the various breeds of established researchers to whom identification, filtering, etc. are important (such as control engineers, time series analysts, econometricians, probabilists, mathematical geologists, and various kinds of pure and applied mathematicians; all of these were represented at the ASI). For these proceedings we have taken particular care to see to it that the material presented will be understandable for a quite diverse audience. To that end we have added a fifth tutorial section (besides the four presented at the meeting) and have also included an extensive introduction which explains in detail the main problem areas and themes of these proceedings and which outlines how the various contributions fit together to form a coherent, integrated whole. The prerequisites needed to understand the material in this volume are modest and most graduate students in e. g. mathematical systems theory, applied mathematics, econo metrics or control engineering will qualify."
Stochastic ordering is a fundamental guide for decision making under uncertainty. It is also an essential tool in the study of structural properties of complex stochastic systems. This reference text presents a comprehensive coverage of the various notions of stochastic orderings, their closure properties, and their applications. Some of these orderings are routinely used in many applications in economics, finance, insurance, management science, operations research, statistics, and various other fields of study, and the value of the other notions of stochastic orderings still needs to be explored further. This book is an ideal reference for anyone interested in decision making under uncertainty and interested in the analysis of complex stochastic systems. It is suitable as a text for advanced graduate course on stochastic ordering and applications.
Traditionally, randomness and determinism have been viewed as being
diametrically opposed, based on the idea that causality and
determinism is complicated by "noise." Although recent research has
suggested that noise can have a productive role, it still views
noise as a separate entity. This work suggests that this not need
to be so. In an informal presentation, instead, the problem is
traced to traditional assumptions regarding dynamical equations and
their need for unique solutions. If this requirement is relaxed,
the equations admit for instability and stochasticity evolving from
the dynamics itself. This allows for a decoupling from the "burden"
of the past and provides insights into concepts such as
predictability, irreversibility, adaptability, creativity and
multi-choice behaviour. This reformulation is especially relevant
for biological and social sciences whose need for flexibility a
propos of environmental demands is important to understand: this
suggests that many system models are based on randomness and
nondeterminism complicated with a little bit of determinism to
ultimately achieve concurrent flexibility and stability. As a
result, the statistical perception of reality is seen as being a
more productive tool than classical determinism. The book addresses
scientists of all disciplines, with special emphasis at making the
ideas more accessible to scientists and students not traditionally
involved in the formal mathematics of the physical sciences. The
implications may be of interest also to specialists in the
philosophy of science.
The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of Hille-Yosida and Lumer-Phillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and Feller-Markov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the Riemann-Liouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.
This text offers a mathematically rigorous exposition of the basic theory of marked point processes developing randomly over time, and shows how this theory may be used to treat piecewise deterministic stochastic processes in continuous time. The point processes are constructed from scratch with detailed proofs and their distributions characterized using compensating measures and martingale structures. The second part of the book addresses applications of the just developed theory. This analysis of various models in applied statistics and probability includes examples and exercises in survival analysis, branching processes, ruin probabilities, sports (soccer), finance and risk management (arbitrage and portfolio trading strategies), and queueing theory. Graduate students and researchers interested in probabilistic modeling and its applications will find this text an excellent resource, requiring for mastery a solid foundation in probability theory, measure and integration, as well as some knowledge of stochastic processes and martingales. portions that are crucial and those that can be omitted by non-specialists, making the material more accessible to a wider cross-disciplinary audience.
Methods of reasoning lying at the heart of rational scientific inference are explored and applied in some 55 papers by contributors from industry, defense establishments, and academia, brought together under the sponsorship of the US Navy and several European and American chemical corporations. The
Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems."
For many practical problems, observations are not independent. In this book, limit behaviour of an important kind of dependent random variables, the so-called mixing random variables, is studied. Many profound results are given, which cover recent developments in this subject, such as basic properties of mixing variables, powerful probability and moment inequalities, weak convergence and strong convergence (approximation), limit behaviour of some statistics with a mixing sample, and many useful tools are provided. Audience: This volume will be of interest to researchers and graduate students in the field of probability and statistics, whose work involves dependent data (variables).
This volume contains the contributions of the participants of the Sixth Oslo-Silivri Workshop on Stochastic Analysis, held in Geilo from July 29 to August 6, 1996. There are two main lectures * Stochastic Differential Equations with Memory, by S.E. A. Mohammed, * Backward SDE's and Viscosity Solutions of Second Order Semilinear PDE's, by E. Pardoux. The main lectures are presented at the beginning of the volume. There is also a review paper at the third place about the stochastic calculus of variations on Lie groups. The contributing papers vary from SPDEs to Non-Kolmogorov type probabilistic models. We would like to thank * VISTA, a research cooperation between Norwegian Academy of Sciences and Letters and Den Norske Stats Oljeselskap (Statoil), * CNRS, Centre National de la Recherche Scientifique, * The Department of Mathematics of the University of Oslo, * The Ecole Nationale Superieure des Telecommunications, for their financial support. L. Decreusefond J. Gjerde B. 0ksendal A.S. Ustunel PARTICIPANTS TO THE 6TH WORKSHOP ON STOCHASTIC ANALYSIS Vestlia H yfjellshotell, Geilo, Norway, July 28 -August 4, 1996. E-mail: [email protected] Aureli ALABERT Departament de Matematiques Laurent DECREUSEFOND Universitat Autonoma de Barcelona Ecole Nationale Superieure des Telecom- 08193-Bellaterra munications CATALONIA (Spain) Departement Reseaux E-mail: alabert@mat. uab.es 46, rue Barrault Halvard ARNTZEN 75634 Paris Cedex 13 Dept. of Mathematics FRANCE University of Oslo E-mail: [email protected] Box 1053 Blindern Laurent DENIS N-0316 Oslo C.M.I.
Markov processes represent a universal model for a large variety of real life random evolutions. The wide flow of new ideas, tools, methods and applications constantly pours into the ever-growing stream of research on Markov processes that rapidly spreads over new fields of natural and social sciences, creating new streamlined logical paths to its turbulent boundary. Even if a given process is not Markov, it can be often inserted into a larger Markov one (Markovianization procedure) by including the key historic parameters into the state space. This monograph gives a concise, but systematic and self-contained, exposition of the essentials of Markov processes, together with recent achievements, working from the "physical picture" - a formal pre-generator, and stressing the interplay between probabilistic (stochastic differential equations) and analytic (semigroups) tools. The book will be useful to students and researchers. Part I can be used for a one-semester course on Brownian motion, Levy and Markov processes, or on probabilistic methods for PDE. Part II mainly contains the author's research on Markov processes. From the contents: Tools from Probability and Analysis Brownian motion Markov processes and martingales SDE, DE and martingale problems Processes in Euclidean spaces Processes in domains with a boundary Heat kernels for stable-like processes Continuous-time random walks and fractional dynamics Complex chains and Feynman integral
This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory. |
You may like...
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,500
Discovery Miles 25 000
Foundations and Methods of Stochastic…
Barry L. Nelson, Linda Pei
Hardcover
R2,992
Discovery Miles 29 920
The Theory of Queuing Systems with…
Alexander N. Dudin, Valentina I. Klimenok, …
Hardcover
R2,859
Discovery Miles 28 590
Two-Dimensional Random Walk - From Path…
Serguei Popov
Hardcover
|