![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Most practical processes such as chemical reactor, industrial furnace, heat exchanger, etc., are nonlinear stochastic systems, which makes their con trol in general a hard problem. Currently, there is no successful design method for this class of systems in the literature. One common alterna tive consists of linearizing the nonlinear dynamical stochastic system in the neighborhood of an operating point and then using the techniques for linear systems to design the controller. The resulting model is in general an approximation of the real behavior of a dynamical system. The inclusion of the uncertainties in the model is therefore necessary and will certainly improve the performance of the dynamical system we want to control. The control of uncertain systems has attracted a lot of researchers from the control community. This topic has in fact dominated the research effort of the control community during the last two decades, and many contributions have been reported in the literature. Some practical dynamical systems have time delay in their dynamics, which makes their control a complicated task even in the deterministic case. Recently, the class ofuncertain dynamical deterministic systems with time delay has attracted some researchers, and some interesting results have been reported in both deterministic and stochastic cases. But wecan't claim that the control problem ofthis class ofsystems is completely solved; more work must be done for this class of systems."
The Markov chain approximation methods are widely used for the numerical solution of nonlinear stochastic control problems in continuous time. This book extends the methods to stochastic systems with delays. The book is the first on the subject and will be of great interest to all those who work with stochastic delay equations and whose main interest is either in the use of the algorithms or in the mathematics. An excellent resource for graduate students, researchers, and practitioners, the work may be used as a graduate-level textbook for a special topics course or seminar on numerical methods in stochastic control.
Nine survey articles in this volume extend concepts from classical probability and stochastic processes to a number of areas of mathematical physics. Key topics covered: nonlinear stochastic wave equations, completely positive maps, Mehler-type semigroups on Hilbert spaces, entropic projections, martingale problem and Markov uniqueness of infinite- dimensional Nelson diffusions, analysis in geometric probability theory, measure-preserving shifts on the Wiener space, cohomology on loop spaces, and stochastic Volterra equations Contributors: H. Airault * L. Coutin * L. Decreusefond * C. Leonard * R. Leandre * P. Lescot * P. Malliavin * M. Oberguggenberger * R. Rebolledo * F. Russo * A.S. Ustunel * L. Wu The work, an outgrowth of a workshop on stochastic analysis held in Lisbon, serves as a good reference text for researchers and advanced students in the fields of probability, stochastic processes, analysis, geometry, math physics, and physics.
This book originated from our interest in sea surface temperature variability. Our initial, though entirely pragmatic, goal was to derive adequate mathemat ical tools for handling certain oceanographic problems. Eventually, however, these considerations went far beyond oceanographic applications partly because one of the authors is a mathematician. We found that many theoretical issues of turbulent transport problems had been repeatedly discussed in fields of hy drodynamics, plasma and solid matter physics, and mathematics itself. There are few monographs concerned with turbulent diffusion in the ocean (Csanady 1973, Okubo 1980, Monin and Ozmidov 1988). While selecting material for this book we focused, first, on theoretical issues that could be helpful for understanding mixture processes in the ocean, and, sec ond, on our own contribution to the problem. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: the stochastic advection-diffusion equation. There is no attempt to derive universal statistics for turbulent flow. Instead, the focus is on a statistical description of a passive scalar (tracer) under given velocity statistics. As for applications, this book addresses only one phenomenon: transport of sea surface temperature anomalies. Hopefully, however, our two main approaches are applicable to other subjects."
The contributions by leading experts in this book focus on a variety of topics of current interest related to information-based complexity, ranging from function approximation, numerical integration, numerical methods for the sphere, and algorithms with random information, to Bayesian probabilistic numerical methods and numerical methods for stochastic differential equations.
Maximum entropy and Bayesian methods have fundamental, central roles in scientific inference, and, with the growing availability of computer power, are being successfully applied in an increasing number of applications in many disciplines. This volume contains selected papers presented at the Thirteenth International Workshop on Maximum Entropy and Bayesian Methods. It includes an extensive tutorial section, and a variety of contributions detailing application in the physical sciences, engineering, law, and economics. Audience: Researchers and other professionals whose work requires the application of practical statistical inference.
A self-contained treatment of stochastic processes arising from models for queues, insurance risk, and dams and data communication, using their sample function properties. The approach is based on the fluctuation theory of random walks, L vy processes, and Markov-additive processes, in which Wiener-Hopf factorisation plays a central role. This second edition includes results for the virtual waiting time and queue length in single server queues, while the treatment of continuous time storage processes is thoroughly revised and simplified. With its prerequisite of a graduate-level course in probability and stochastic processes, this book can be used as a text for an advanced course on applied probability models.
This volume has its origin in the Seventeenth International Workshop on Maximum Entropy and Bayesian Methods, MAXENT 97. The workshop was held at Boise State University in Boise, Idaho, on August 4 -8, 1997. As in the past, the purpose of the workshop was to bring together researchers in different fields to present papers on applications of Bayesian methods (these include maximum entropy) in science, engineering, medicine, economics, and many other disciplines. Thanks to significant theoretical advances and the personal computer, much progress has been made since our first Workshop in 1981. As indicated by several papers in these proceedings, the subject has matured to a stage in which computational algorithms are the objects of interest, the thrust being on feasibility, efficiency and innovation. Though applications are proliferating at a staggering rate, some in areas that hardly existed a decade ago, it is pleasing that due attention is still being paid to foundations of the subject. The following list of descriptors, applicable to papers in this volume, gives a sense of its contents: deconvolution, inverse problems, instrument (point-spread) function, model comparison, multi sensor data fusion, image processing, tomography, reconstruction, deformable models, pattern recognition, classification and group analysis, segmentation/edge detection, brain shape, marginalization, algorithms, complexity, Ockham's razor as an inference tool, foundations of probability theory, symmetry, history of probability theory and computability. MAXENT 97 and these proceedings could not have been brought to final form without the support and help of a number of people.
'Et moi *...* si j'avait su comment en rcvenir. One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canistcr labelled 'discarded non- sense'. The scries is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
This book studies the existence and uniqueness of solutions to parabolic-type equations with irregular coefficients and/or initial conditions. It elaborates on the DiPerna-Lions theory of renormalized solutions to linear transport equations and related equations, and also examines the connection between the results on the partial differential equation and the well-posedness of the underlying stochastic/ordinary differential equation.
Computations with Markov Chains presents the edited and reviewed proceedings of the Second International Workshop on the Numerical Solution of Markov Chains, held January 16--18, 1995, in Raleigh, North Carolina. New developments of particular interest include recent work on stability and conditioning, Krylov subspace-based methods for transient solutions, quadratic convergent procedures for matrix geometric problems, further analysis of the GTH algorithm, the arrival of stochastic automata networks at the forefront of modelling stratagems, and more. An authoritative overview of the field for applied probabilists, numerical analysts and systems modelers, including computer scientists and engineers.
This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions. The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.
Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.
This book gives a self-contained introduction to the dynamic martingale approach to marked point processes (MPP). Based on the notion of a compensator, this approach gives a versatile tool for analyzing and describing the stochastic properties of an MPP. In particular, the authors discuss the relationship of an MPP to its compensator and particular classes of MPP are studied in great detail. The theory is applied to study properties of dependent marking and thinning, to prove results on absolute continuity of point process distributions, to establish sufficient conditions for stochastic ordering between point and jump processes, and to solve the filtering problem for certain classes of MPPs.
The 1992 Seminar on Stochastic Processes was held at the Univer sity of Washington from March 26 to March 28, 1992. This was the twelfth in a series of annual meetings which provide researchers with the opportunity to discuss current work on stochastic processes in an informal and enjoyable atmosphere. Previous seminars were held at Northwestern University, Princeton University, University of Florida, University of Virginia, University of California, San Diego, University of British Columbia and University of California, Los An geles. Following the successful format of previous years, there were five invited lectures, delivered by R. Adler, R. Banuelos, J. Pitman, S. J. Taylor and R. Williams, with the remainder of the time being devoted to informal communications and workshops on current work and problems. The enthusiasm and interest of the participants cre ated a lively and stimulating atmosphere for the seminar. A sample of the research discussed there is contained in this volume. The 1992 Seminar was made possible through the support of the National Science Foundation, the National Security Agency, the Institute of Mathematical Statistics and the University of Washing ton. We extend our thanks to them and to the publisher Birkhauser Boston for their support and encouragement. Richard F. Bass Krzysztof Burdzy Seattle, 1992 SUPERPROCESS LOCAL AND INTERSECTION LOCAL TIMES AND THEIR CORRESPONDING PARTICLE PICTURES Robert J."
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
This book presents a comprehensive development of effective numerical methods for stochastic control problems in continuous time. The process models are diffusions, jump-diffusions, or reflected diffusions of the type that occur in the majority of current applications. All the usual problem formulations are included, as well as those of more recent interest such as ergodic control, singular control and the types of reflected diffusions used as models of queuing networks. Applications to complex deterministic problems are illustrated via application to a large class of problems from the calculus of variations. The general approach is known as the Markov Chain Approximation Method. The required background to stochastic processes is surveyed, there is an extensive development of methods of approximation, and a chapter is devoted to computational techniques. The book is written on two levels, that of practice (algorithms and applications) and that of the mathematical development. Thus the methods and use should be broadly accessible. This update to the first edition will include added material on the control of the 'jump term' and the 'diffusion term.' There will be additional material on the deterministic problems, solving the Hamilton-Jacobi equations, for which the authors' methods are still among the most useful for many classes of problems. All of these topics are of great and growing current interest.
Nonlinear statistical modelling is an area of growing importance. This monograph presents mostly new results and methods concerning the nonlinear regression model. Among the aspects which are considered are linear properties of nonlinear models, multivariate nonlinear regression, intrinsic and parameter effect curvature, algorithms for calculating the L2-estimator and both local and global approximation. In addition to this a chapter has been added on the large topic of nonlinear exponential families. The volume will be of interest to both experts in the field of nonlinear statistical modelling and to those working in the identification of models and optimization, as well as to statisticians in general.
This thesis is concerned with establishing a rigorous, modern theory of the stochastic and dissipative forces on crystal defects, which remain poorly understood despite their importance in any temperature dependent micro-structural process such as the ductile to brittle transition or irradiation damage. The author first uses novel molecular dynamics simulations to parameterise an efficient, stochastic and discrete dislocation model that allows access to experimental time and length scales. Simulated trajectories are in excellent agreement with experiment. The author also applies modern methods of multiscale analysis to extract novel bounds on the transport properties of these many body systems. Despite their successes in coarse graining, existing theories are found unable to explain stochastic defect dynamics. To resolve this, the author defines crystal defects through projection operators, without any recourse to elasticity. By rigorous dimensional reduction, explicit analytical forms are derived for the stochastic forces acting on crystal defects, allowing new quantitative insight into the role of thermal fluctuations in crystal plasticity.
1 2 Jean-Dominique Deuschel and Andreas Greven 1 Fakult] at II - Mathematik und Naturwissenschaften, Institut fur ] Mathematik, Technische Universit] at Berlin, Strasse des 17. Juni 136, D-10623 Berlin Tel. (0049 30) 314-25193, Fax: (0049 30) 314-21695 deuschel@math. tu-berlin. de 2 1 Mathematisches Institut, Bismarckstr. 1, D-91054 Erlangen, 2 Tel. (0049 9131) 85-22454, Fax (0049 9131) 85-26214 This volume collects original work and reviews on work in the ?eld of pro- bilitywhichtookplacewithintheframeworkoftheDFG-Schwerpunkt: Int- acting stochastic systems of high complexity. This research network started in May 1997 and was funded till May 2003. In this network between 20 30 (depending on the 2-year periods of grant renewal) groups from probab- ity, statistical physics and mathematical statistics within Germany were - tive. An extensive international collaboration was an essential part of this network and here particularly intense contacts were built up between the DFG-Schwerpunkt and EURANDOM, a European institute for research in stochastics, which was founded in 1997. This partnership reached from joint workshops and colloquia to collaborations on speci?c projects. The key scienti?c idea which was behind the research network was to - plore and develop the connections between research in in?nite dimensional stochastic analysis, statistical physics (Gibbs measures, random media), s- tial population models from mathematical biology, complex models of ?n- cial markets or of stochastic models with interacting components in other sciences as for example in climatology."
In this thesis two variants of the fast variable elimination method are developed. They are intuitive, simple to implement and give results which are in very good agreement with those found from numerical simulations. The relative simplicity of the techniques makes them ideal for applying to problems featuring demographic stochasticity, for experts and non-experts alike. Within the context of mathematical modelling, fast variable elimination is one of the central tools with which one can simplify a multivariate problem. When used in the context of of deterministic systems, the theory is quite standard, but when stochastic effects are present, it becomes less straightforward to apply. While the introductory and background chapters form an excellent primer to the theory of stochastic population dynamics, the techniques developed can be applied to systems exhibiting a separation of timescales in a variety of fields including population genetics, ecology and epidemiology.
From the reviews: "The highly esteemed 1990 first edition of this book now appears in a much expanded second edition. The difference between the first two English editions is entirely due to the addition of numerous exercises. The result is a truly excellent book, balancing ideally between theory and practice. ....As already hinted at above, this book provides the ideal bridge between the classical (deterministic) life insurance theory and the emerging dynamic models based on stochastic processes and the modern theory of finance. The structure of the bridge is very solid, though at the same time pleasant to walk along. I have no doubt that Gerber's book will become the standard text for many years to come. Metrika, 44, 1996, 2
Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability in solving problems in modern society.
The first part of this book presents the essential topics for an introduction to deterministic optimal control theory. The second part introduces stochastic optimal control for Markov diffusion processes. It also inlcudes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
During the last fifty years, Gopinath Kallianpur has made extensive and significant contributions to diverse areas of probability and statistics, including stochastic finance, Fisher consistent estimation, non-linear prediction and filtering problems, zero-one laws for Gaussian processes and reproducing kernel Hilbert space theory, and stochastic differential equations in infinite dimensions. To honor Kallianpur's pioneering work and scholarly achievements, a number of leading experts have written research articles highlighting progress and new directions of research in these and related areas. This commemorative volume, dedicated to Kallianpur on the occasion of his seventy-fifth birthday, will pay tribute to his multi-faceted achievements and to the deep insight and inspiration he has so graciously offered his students and colleagues throughout his career. Contributors to the volume: S. Aida, N. Asai, K. B. Athreya, R. N. Bhattacharya, A. Budhiraja, P. S. Chakraborty, P. Del Moral, R. Elliott, L. Gawarecki, D. Goswami, Y. Hu, J. Jacod, G. W. Johnson, L. Johnson, T. Koski, N. V. Krylov, I. Kubo, H.-H. Kuo, T. G. Kurtz, H. J. Kushner, V. Mandrekar, B. Margolius, R. Mikulevicius, I. Mitoma, H. Nagai, Y. Ogura, K. R. Parthasarathy, V. Perez-Abreu, E. Platen, B. V. Rao, B. Rozovskii, I. Shigekawa, K. B. Sinha, P. Sundar, M. Tomisaki, M. Tsuchiya, C. Tudor, W. A. Woycynski, J. Xiong |
You may like...
Stochastic Processes - Estimation…
Kaddour Najim, Enso Ikonen, …
Hardcover
R4,310
Discovery Miles 43 100
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
Hidden Link Prediction in Stochastic…
Babita Pandey, Aditya Khamparia
Hardcover
R4,843
Discovery Miles 48 430
Advancements in Bayesian Methods and…
Alastair G Young, Arni S.R. Srinivasa Rao, …
Hardcover
R6,201
Discovery Miles 62 010
Data Science: Theory and Applications…
C.R. Rao, Arni S.R. Srinivasa Rao
Hardcover
R6,177
Discovery Miles 61 770
Geometry and Statistics, Volume 46
Frank Nielsen, Arni S.R. Srinivasa Rao, …
Hardcover
R6,194
Discovery Miles 61 940
Research Problems in Function Theory…
Walter K Hayman, Eleanor F. Lingham
Hardcover
Ruin Probabilities - Smoothness, Bounds…
Yuliya Mishura, Olena Ragulina
Hardcover
R3,086
Discovery Miles 30 860
|