Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
It appears that we live in an age of disasters: the mighty Missis sippi and Missouri flood millions of acres, earthquakes hit Tokyo and California, airplanes crash due to mechanical failure and the seemingly ever increasing wind speeds make the storms more and more frightening. While all these may seem to be unexpected phenomena to the man on the street, they are actually happening according to well defined rules of science known as extreme value theory. We know that records must be broken in the future, so if a flood design is based on the worst case of the past then we are not really prepared against floods. Materials will fail due to fatigue, so if the body of an aircraft looks fine to the naked eye, it might still suddenly fail if the aircraft has been in operation over an extended period of time. Our theory has by now penetrated the so cial sciences, the medical profession, economics and even astronomy. We believe that our field has come of age. In or er to fully utilize the great progress in the theory of extremes and its ever increasing acceptance in practice, an international conference was organized in which equal weight was given to theory and practice. This book is Volume I of the Proceedings of this conference. In selecting the papers for Volume lour guide was to have authoritative works with a large variety of coverage of both theory and practice."
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes."
This volume contains a large spectrum of work: super processes, Dirichlet forms, anticipative stochastic calculus, random fields and Wiener space analysis. The first part of the volume consists of two main lectures given at the third Silivri meeting in 1990: 1. "Infinitely divisible random measures and superprocesses" by D.A. Dawson, 2. "Dirichlet forms on infinite dimensional spaces and appli- cations" by M. Rockner. The second part consists of recent research papers all related to Stochastic Analysis, motivated by stochastic partial differ- ential equations, Markov fields, the Malliavin calculus and the Feynman path integrals. We would herewith like to thank the ENST for its material support for the above mentioned meeting as well as for the ini- tial preparation of this volume and to our friend and colleague Erhan Qmlar whose help and encouragement for the realization of this volume have been essential. H. Korezlioglu A. S. Ustiinel INFINITELY DIVISIBLE RANDOM MEASURES AND SUPERPROCESSES DONALD A. DAWSON 1. Introduction.
01/07 This title is now available from Walter de Gruyter. Please see www.degruyter.com for more information. This book is devoted to stochastic operators in Hilbert space. A number of models in modern probability theory apply the notion of a stochastic operator in explicit or latent form. In this book, objects from the Gaussian case are considered. Therefore, it is useful to consider all random variables and elements as functionals from the Wiener process or its formal derivative, i.e. white noise. The book consists of five chapters. The first chapter is devoted to stochastic calculus and its main goal is to prepare the tools for solving stochastic equations. In the second chapter the structure of stochastic equations, mainly the structure of Gaussian strong linear operators, is studied. In chapter 3 the definition of the action of the stochastic operator on random elements in considered. Chapter 4 deals with the mathematical models in which the notions of stochastic calculus arise and in the final chapter the equation with random operators is considered.
The contributions by leading experts in this book focus on a variety of topics of current interest related to information-based complexity, ranging from function approximation, numerical integration, numerical methods for the sphere, and algorithms with random information, to Bayesian probabilistic numerical methods and numerical methods for stochastic differential equations.
This textbook provides a comprehensive introduction to probability and stochastic processes, and shows how these subjects may be applied in computer performance modeling. The author's aim is to derive probability theory in a way that highlights the complementary nature of its formal, intuitive, and applicative aspects while illustrating how the theory is applied in a variety of settings. Readers are assumed to be familiar with elementary linear algebra and calculus, including being conversant with limits, but otherwise, this book provides a self-contained approach suitable for graduate or advanced undergraduate students. The first half of the book covers the basic concepts of probability, including combinatorics, expectation, random variables, and fundamental theorems. In the second half of the book, the reader is introduced to stochastic processes. Subjects covered include renewal processes, queueing theory, Markov processes, matrix geometric techniques, reversibility, and networks of queues. Examples and applications are drawn from problems in computer performance modeling. Throughout, large numbers of exercises of varying degrees of difficulty will help to secure a reader's understanding of these important and fascinating subjects.
This book covers a highly relevant and timely topic that is of wide interest, especially in finance, engineering and computational biology. The introductory material on simulation and stochastic differential equation is very accessible and will prove popular with many readers. While there are several recent texts available that cover stochastic differential equations, the concentration here on inference makes this book stand out. No other direct competitors are known to date. With an emphasis on the practical implementation of the simulation and estimation methods presented, the text will be useful to practitioners and students with minimal mathematical background. What's more, because of the many R programs, the information here is appropriate for many mathematically well educated practitioners, too.
This book discusses stochastic dynamics of power systems and the related analytical methodology. It summarizes and categorizes the stochastic elements of power systems and develops a framework for research on stochastic dynamics of power systems. It also establishes a research model for stochastic dynamics of power systems and theoretically proves stochastic stability in power systems. Further, in addition to demonstrating the stochastic oscillation mechanism in power systems, it also proposes methods for quantitative analysis and stochastic optimum control in the field of stochastic dynamic security in power systems. This book is a valuable resource for researchers, scholars and engineers in the field of electrics.
Volume 1: (edited by Keith W. Hipel) In this landmark collection of papers, highly respected scientists and engineers from around the world present the latest research results in extreme value analyses for floods and droughts. Two approaches that are commonly employed in flood frequency analyses are the maximum annual flood and partial duration series or peak over threshold procedures. Recent theoretical advances as well as illustrative applications are described in detail for each of these approaches. Additionally, droughts and storms are systematically studied using appropriate probabilistic models. A major part of the volume is devoted to frequency analyses and fitting extreme value distributions to hydrological data. Other thought-provoking topics include regionalization techniques, distributed models, entropy and fractal analysis. Volume 1 is of interest to researchers, teachers, students and practitioners who wish to place themselves at the leading edge of flood frequency and drought analyses. Volume 2: (edited by Keith W. Hipel) World renowned scientists present valuable contributions to stochastic and statistical modelling of groundwater and surface water systems. The philosophy of probabilistic modelling in the hydrological sciences is put into proper perspective and the importance of stochastic differential equations in the environmental sciences is explained and illustrated. The new research ideas put forward in groundwater modelling will assist decision makers in tackling challenging problems such as controlling pollution of underground aquifers and obtaining adequate water supplies. Additionally, different types of stochastic models are used in modelling a range ofinteresting surface water problems. Other topics covered in this landmark volume include stochastic optimization, moment analysis, carbon dioxide modelling and rainfall prediction. Volume 2 is of interest to researchers, teachers, students and practitioners who wish to be at the leading edge of stochastic and statistical modelling in the environmental sciences. Volume 3: (edited by Keith W. Hipel; A. Ian McLeod; U.S. Panu; Vijay P. Singh) International experts from around the globe present a rich variety of intriguing developments in time series analysis in hydrology and environmental engineering. Climatic change is of great concern to everyone and significant contributions to this challenging research topic are put forward by internationally renowned authors. A range of interesting applications in hydrological forecasting are given for case studies in reservoir operation in North America, Asia and South America. Additionally, progress in entropy research is described and entropy concepts are applied to various water resource systems problems. Neural networks are employed for forecasting runoff and water demand. Moreover, graphical, nonparametric and parametric trend analyses methods are compared and applied to water quality time series. Other topics covered in this landmark volume include spatial analyses, spectral analyses and different methods for stream-flow modelling. Volume 3 constitutes an invaluable resource for researchers, teachers, students and practitioners who wish to be at the forefront of time series analysis in the environmental sciences. Volume 4: (edited by Keith W. Hipel; Liping Fang) In this landmark set of papers, experts from around the world present the latest andmost promising approaches to both the theory and practice of effective environmental management. To achieve sustainable development, organizations and individual citizens must comply with environmental laws and regulations. Accordingly, a major contribution of this book is the presentation of original techniques for designing effective environmental policies, regulations, inspection procedures and monitoring systems. Interesting methods for modelling risk and decision making problems are discussed from an environmental management perspective. Moreover, knowledge-based techniques for handling environmental problems are also investigated. Finally, the last main part of the book describes optimal approaches to reservoir operation and control that take into account appropriate multiple objectives. Volume 4 is of direct interest to researchers, teachers, students and practitioners concerned with the latest developments in environmental management and sustainable development.
Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors. The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of 'weak' items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stochastic point processes. The basic theory for Poisson shock processes is developed and also shocks as a method of burn-in and of the environmental stress screening for manufactured items are considered. Stochastic Modeling for Reliability introduces and explores the concept of burn-in in heterogeneous populations and its recent development, providing a sound reference for reliability engineers, applied mathematicians, product managers and manufacturers alike.
Volume 1: (edited by Keith W. Hipel) In this landmark collection of papers, highly respected scientists and engineers from around the world present the latest research results in extreme value analyses for floods and droughts. Two approaches that are commonly employed in flood frequency analyses are the maximum annual flood and partial duration series or peak over threshold procedures. Recent theoretical advances as well as illustrative applications are described in detail for each of these approaches. Additionally, droughts and storms are systematically studied using appropriate probabilistic models. A major part of the volume is devoted to frequency analyses and fitting extreme value distributions to hydrological data. Other thought-provoking topics include regionalization techniques, distributed models, entropy and fractal analysis. Volume 1 is of interest to researchers, teachers, students and practitioners who wish to place themselves at the leading edge of flood frequency and drought analyses. Volume 2: (edited by Keith W. Hipel) World renowned scientists present valuable contributions to stochastic and statistical modelling of groundwater and surface water systems. The philosophy of probabilistic modelling in the hydrological sciences is put into proper perspective and the importance of stochastic differential equations in the environmental sciences is explained and illustrated. The new research ideas put forward in groundwater modelling will assist decision makers in tackling challenging problems such as controlling pollution of underground aquifers and obtaining adequate water supplies. Additionally, different types of stochastic models are used in modelling a range ofinteresting surface water problems. Other topics covered in this landmark volume include stochastic optimization, moment analysis, carbon dioxide modelling and rainfall prediction. Volume 2 is of interest to researchers, teachers, students and practitioners who wish to be at the leading edge of stochastic and statistical modelling in the environmental sciences. Volume 3: (edited by Keith W. Hipel; A. Ian McLeod; U.S. Panu; Vijay P. Singh) International experts from around the globe present a rich variety of intriguing developments in time series analysis in hydrology and environmental engineering. Climatic change is of great concern to everyone and significant contributions to this challenging research topic are put forward by internationally renowned authors. A range of interesting applications in hydrological forecasting are given for case studies in reservoir operation in North America, Asia and South America. Additionally, progress in entropy research is described and entropy concepts are applied to various water resource systems problems. Neural networks are employed for forecasting runoff and water demand. Moreover, graphical, nonparametric and parametric trend analyses methods are compared and applied to water quality time series. Other topics covered in this landmark volume include spatial analyses, spectral analyses and different methods for stream-flow modelling. Volume 3 constitutes an invaluable resource for researchers, teachers, students and practitioners who wish to be at the forefront of time series analysis in the environmental sciences. Volume 4: (edited by Keith W. Hipel; Liping Fang) In this landmark set of papers, experts from around the world present the latest andmost promising approaches to both the theory and practice of effective environmental management. To achieve sustainable development, organizations and individual citizens must comply with environmental laws and regulations. Accordingly, a major contribution of this book is the presentation of original techniques for designing effective environmental policies, regulations, inspection procedures and monitoring systems. Interesting methods for modelling risk and decision making problems are discussed from an environmental management perspective. Moreover, knowledge-based techniques for handling environmental problems are also investigated. Finally, the last main part of the book describes optimal approaches to reservoir operation and control that take into account appropriate multiple objectives. Volume 4 is of direct interest to researchers, teachers, students and practitioners concerned with the latest developments in environmental management and sustainable development.
This monograph presents the geoscientific context arising in decorrelative gravitational exploration to determine the mass density distribution inside the Earth. First, an insight into the current state of research is given by reducing gravimetry to mathematically accessible, and thus calculable, decorrelated models. In this way, the various unresolved questions and problems of gravimetry are made available to a broad scientific audience and the exploration industry. New theoretical developments will be given, and innovative ways of modeling geologic layers and faults by mollifier regularization techniques are shown. This book is dedicated to surface as well as volume geology with potential data primarily of terrestrial origin. For deep geology, the geomathematical decorrelation methods are to be designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Bridging several different geo-disciplines, this book leads in a cycle from the potential measurements made by geoengineers, to the cleansing of data by geophysicists and geoengineers, to the subsequent theory and model formation, computer-based implementation, and numerical calculation and simulations made by geomathematicians, to interpretation by geologists, and, if necessary, back. It therefore spans the spectrum from geoengineering, especially geodesy, via geophysics to geomathematics and geology, and back. Using the German Saarland area for methodological tests, important new fields of application are opened, particularly for regions with mining-related cavities or dense development in today's geo-exploration.
This book studies the existence and uniqueness of solutions to parabolic-type equations with irregular coefficients and/or initial conditions. It elaborates on the DiPerna-Lions theory of renormalized solutions to linear transport equations and related equations, and also examines the connection between the results on the partial differential equation and the well-posedness of the underlying stochastic/ordinary differential equation.
Most practical processes such as chemical reactor, industrial furnace, heat exchanger, etc., are nonlinear stochastic systems, which makes their con trol in general a hard problem. Currently, there is no successful design method for this class of systems in the literature. One common alterna tive consists of linearizing the nonlinear dynamical stochastic system in the neighborhood of an operating point and then using the techniques for linear systems to design the controller. The resulting model is in general an approximation of the real behavior of a dynamical system. The inclusion of the uncertainties in the model is therefore necessary and will certainly improve the performance of the dynamical system we want to control. The control of uncertain systems has attracted a lot of researchers from the control community. This topic has in fact dominated the research effort of the control community during the last two decades, and many contributions have been reported in the literature. Some practical dynamical systems have time delay in their dynamics, which makes their control a complicated task even in the deterministic case. Recently, the class ofuncertain dynamical deterministic systems with time delay has attracted some researchers, and some interesting results have been reported in both deterministic and stochastic cases. But wecan't claim that the control problem ofthis class ofsystems is completely solved; more work must be done for this class of systems."
The Markov chain approximation methods are widely used for the numerical solution of nonlinear stochastic control problems in continuous time. This book extends the methods to stochastic systems with delays. The book is the first on the subject and will be of great interest to all those who work with stochastic delay equations and whose main interest is either in the use of the algorithms or in the mathematics. An excellent resource for graduate students, researchers, and practitioners, the work may be used as a graduate-level textbook for a special topics course or seminar on numerical methods in stochastic control.
Nine survey articles in this volume extend concepts from classical probability and stochastic processes to a number of areas of mathematical physics. Key topics covered: nonlinear stochastic wave equations, completely positive maps, Mehler-type semigroups on Hilbert spaces, entropic projections, martingale problem and Markov uniqueness of infinite- dimensional Nelson diffusions, analysis in geometric probability theory, measure-preserving shifts on the Wiener space, cohomology on loop spaces, and stochastic Volterra equations Contributors: H. Airault * L. Coutin * L. Decreusefond * C. Leonard * R. Leandre * P. Lescot * P. Malliavin * M. Oberguggenberger * R. Rebolledo * F. Russo * A.S. Ustunel * L. Wu The work, an outgrowth of a workshop on stochastic analysis held in Lisbon, serves as a good reference text for researchers and advanced students in the fields of probability, stochastic processes, analysis, geometry, math physics, and physics.
2020 Taylor & Francis Award Winner for Outstanding New Textbook! Featuring recent advances in the field, this new textbook presents probability and statistics, and their applications in stochastic processes. This book presents key information for understanding the essential aspects of basic probability theory and concepts of reliability as an application. The purpose of this book is to provide an option in this field that combines these areas in one book, balances both theory and practical applications, and also keeps the practitioners in mind. Features Includes numerous examples using current technologies with applications in various fields of study Offers many practical applications of probability in queueing models, all of which are related to the appropriate stochastic processes (continuous time such as waiting time, and fuzzy and discrete time like the classic Gambler's Ruin Problem) Presents different current topics like probability distributions used in real-world applications of statistics such as climate control and pollution Different types of computer software such as MATLAB (R), Minitab, MS Excel, and R as options for illustration, programing and calculation purposes and data analysis Covers reliability and its application in network queues
Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text. Volume Two returns to the general theory, with additional material on marked and spatial processes. The necessary mathematical background is reviewed in appendices located in Volume One. Daryl Daley is a Senior Fellow in the Centre for Mathematics and Applications at the Australian National University, with research publications in a diverse range of applied probability models and their analysis; he is co-author with Joe Gani of an introductory text in epidemic modelling. David Vere-Jones is an Emeritus Professor at Victoria University of Wellington, widely known for his contributions to Markov chains, point processes, applications in seismology, and statistical education. He is a fellow and Gold Medallist of the Royal Society of New Zealand, and a director of the consulting group "Statistical Research Associates."
Maximum entropy and Bayesian methods have fundamental, central roles in scientific inference, and, with the growing availability of computer power, are being successfully applied in an increasing number of applications in many disciplines. This volume contains selected papers presented at the Thirteenth International Workshop on Maximum Entropy and Bayesian Methods. It includes an extensive tutorial section, and a variety of contributions detailing application in the physical sciences, engineering, law, and economics. Audience: Researchers and other professionals whose work requires the application of practical statistical inference.
This book originated from our interest in sea surface temperature variability. Our initial, though entirely pragmatic, goal was to derive adequate mathemat ical tools for handling certain oceanographic problems. Eventually, however, these considerations went far beyond oceanographic applications partly because one of the authors is a mathematician. We found that many theoretical issues of turbulent transport problems had been repeatedly discussed in fields of hy drodynamics, plasma and solid matter physics, and mathematics itself. There are few monographs concerned with turbulent diffusion in the ocean (Csanady 1973, Okubo 1980, Monin and Ozmidov 1988). While selecting material for this book we focused, first, on theoretical issues that could be helpful for understanding mixture processes in the ocean, and, sec ond, on our own contribution to the problem. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: the stochastic advection-diffusion equation. There is no attempt to derive universal statistics for turbulent flow. Instead, the focus is on a statistical description of a passive scalar (tracer) under given velocity statistics. As for applications, this book addresses only one phenomenon: transport of sea surface temperature anomalies. Hopefully, however, our two main approaches are applicable to other subjects."
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
This book gives an overview of affine diffusions, from Ornstein-Uhlenbeck processes to Wishart processes and it considers some related diffusions such as Wright-Fisher processes. It focuses on different simulation schemes for these processes, especially second-order schemes for the weak error. It also presents some models, mostly in the field of finance, where these methods are relevant and provides some numerical experiments. The book explains the mathematical background to understand affine diffusions and analyze the accuracy of the schemes.
This work focuses on analyzing and presenting solutions for a wide range of stochastic problems that are encountered in applied mathematics, probability, physics, engineering, finance, and economics. The approach used reduces the gap between the mathematical and engineering literature. Stochastic problems are defined by algebraic, differential or integral equations with random coefficients and/or input. However, it is the type, rather than the particular field of application, that is used to categorize these problems. An introductory chapter outlines the types of stochastic problems under consideration in this book and illustrates some of their applications. A user friendly, systematic exposition unfolds as follows: The essentials of probability theory, random processes, stochastic integration, and Monte Carlo simulation are developed in chapters 2--5. The Monte Carlo method is used extensively to illustrate difficult theoretical concepts and solve numerically some of the stochastic problems in chapters 6--9. Key features: * Computational skills developed as needed to solve realistic stochastic problems * Classical mathematical notation used, and essential theoretical facts boxed * Numerous examples from applied sciences and engineering * Complete proofs given; if too technical, notes clarify the idea and/or main steps * Problems at the end of each chapter reinforce applications; hints given. * Good bibliography at the end of every chapter * Comprehensive index This work is unique, self-contained, and far from a collection of facts and formulas. The analytical and numerical methods approach for solving stochastic problems may be used for self-study by avariety of researchers, and in the classroom by first year graduate students. |
You may like...
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,500
Discovery Miles 25 000
Hidden Link Prediction in Stochastic…
Babita Pandey, Aditya Khamparia
Hardcover
R5,098
Discovery Miles 50 980
Modern Dynamic Reliability Analysis for…
Anatoly Lisnianski, Ilia Frenkel, …
Hardcover
R4,899
Discovery Miles 48 990
Synchronization in Infinite-Dimensional…
Igor Chueshov, Bjoern Schmalfuss
Hardcover
R3,555
Discovery Miles 35 550
Foundations and Methods of Stochastic…
Barry L. Nelson, Linda Pei
Hardcover
R2,992
Discovery Miles 29 920
Stochastic Processes and Related Topics…
Ioannis Karatzas, B.S. Rajput, …
Hardcover
R2,606
Discovery Miles 26 060
|