![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Stochastic Analysis of Mixed Fractional Gaussian Processes presents the main tools necessary to characterize Gaussian processes. The book focuses on the particular case of the linear combination of independent fractional and sub-fractional Brownian motions with different Hurst indices. Stochastic integration with respect to these processes is considered, as is the study of the existence and uniqueness of solutions of related SDE's. Applications in finance and statistics are also explored, with each chapter supplying a number of exercises to illustrate key concepts.
Stochastic processes have a wide range of applications ranging from image processing, neuroscience, bioinformatics, financial management, and statistics. Mathematical, physical, and engineering systems use stochastic processes for modeling and reasoning phenomena. While comparing AI-stochastic systems with other counterpart systems, we are able to understand their significance, thereby applying new techniques to obtain new real-time results and solutions. Stochastic Processes and Their Applications in Artificial Intelligence opens doors for artificial intelligence experts to use stochastic processes as an effective tool in real-world problems in computational biology, speech recognition, natural language processing, and reinforcement learning. Covering key topics such as social media, big data, and artificial intelligence models, this reference work is ideal for mathematicians, industry professionals, researchers, scholars, academicians, practitioners, instructors, and students.
Deep Learning, Volume 48 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Generative Adversarial Networks for Biometric Synthesis, Data Science and Pattern Recognition, Facial Data Analysis, Deep Learning in Electronics, Pattern Recognition, Computer Vision and Image Processing, Mechanical Systems, Crop Technology and Weather, Manipulating Faces for Identity Theft via Morphing and Deepfake, Biomedical Engineering, and more.
This book aims to provide an overview of the special functions of fractional calculus and their applications in diffusion and random search processes. The book contains detailed calculations for various examples of anomalous diffusion, random search and stochastic resetting processes, which can be easily followed by the reader, who will be able to reproduce the obtained results. The book will be intended for advanced undergraduate and graduate students and researchers in physics, mathematics and other natural sciences due to the various examples which will be provided in the book.
Advancements in Bayesian Methods and Implementation, Volume 47 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Fisher Information, Cramer-Rao and Bayesian Paradigm, Compound beta binomial distribution functions, MCMC for GLMMS, Signal Processing and Bayesian, Mathematical theory of Bayesian statistics where all models are wrong, Machine Learning and Bayesian, Non-parametric Bayes, Bayesian testing, and Data Analysis with humans, Variational inference or Functional horseshoe, Generalized Bayes.
Geometry and Statistics, Volume 46 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors.
Environmental Data Analysis with MATLAB, Third Edition, is a new edition that expands fundamentally on the original with an expanded tutorial approach, more clear organization, new crib sheets, and problem sets providing a clear learning path for students and researchers working to analyze real data sets in the environmental sciences. The work teaches the basics of the underlying theory of data analysis and then reinforces that knowledge with carefully chosen, realistic scenarios, including case studies in each chapter. The new edition is expanded to include applications to Python, an open source software environment. Significant content in Environmental Data Analysis with MATLAB, Third Edition is devoted to teaching how the programs can be effectively used in an environmental data analysis setting. This new edition offers chapters that can both be used as self-contained resources or as a step-by-step guide for students, and is supplemented with data and scripts to demonstrate relevant use cases.
The present monograph on stochastic Komatu-Loewner evolutions (SKLEs) provides the first systematic extension of the Schramm-Loewner evolution (SLE) theory from a simply connected planar domain to multiply connected domains by using the Brownian motion with darning (BMD) that has arisen in a recent study of the boundary theory of symmetric Markov processes.This volume is presented in an accessible manner for the interested researchers and graduate students. It also brings new insights into SLEs as special cases of SKLEs. Mathematically, it can be viewed as a powerful application of stochastic analysis via BMDs to complex analysis.
The subject of information geometry blends several areas of statistics, computer science, physics, and mathematics. The subject evolved from the groundbreaking article published by legendary statistician C.R. Rao in 1945. His works led to the creation of Cramer-Rao bounds, Rao distance, and Rao-Blackawellization. Fisher-Rao metrics and Rao distances play a very important role in geodesics, econometric analysis to modern-day business analytics. The chapters of the book are written by experts in the field who have been promoting the field of information geometry and its applications.
Data Science: Theory and Applications, Volume 44 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of interesting topics, including Modeling extreme climatic events using the generalized extreme value distribution, Bayesian Methods in Data Science, Mathematical Modeling in Health Economic Evaluations, Data Science in Cancer Genomics, Blockchain Technology: Theory and Practice, Statistical outline of animal home ranges, an application of set estimation, Application of Data Handling Techniques to Predict Pavement Performance, Analysis of individual treatment effects for enhanced inferences in medicine, and more. Additional sections cover Nonparametric Data Science: Testing Hypotheses in Large Complex Data, From Urban Mobility Problems to Data Science Solutions, and Data Structures and Artificial Intelligence Methods.
Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types. Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers.
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation.The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space.The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
This book presents a short introduction to continuous-time financial models. An overview of the basics of stochastic analysis precedes a focus on the Black-Scholes and interest rate models. Other topics covered include self-financing strategies, option pricing, exotic options and risk-neutral probabilities. Vasicek, Cox-Ingersoll-Ross, and Heath-Jarrow-Morton interest rate models are also explored. The author presents practitioners with a basic introduction, with more rigorous information provided for mathematicians. The reader is assumed to be familiar with the basics of probability theory. Some basic knowledge of stochastic integration and differential equations theory is preferable, although all preliminary information is given in the first part of the book. Some relatively simple theoretical exercises are also provided.
The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE's as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for regression functions and in simple but useful results on the dependence of eigenvalues of partial differential operators on their parameters. Examples are provided that reveal sometimes intriguing geometry of spatiotemporal input signals and responses to them. An introduction to optimal experimental design for parameter estimation of regression functions is provided. The emphasis is on functions having a tensor product (Kronecker) structure that is compatible with eigenfunctions of many partial differential operators. New optimality conditions in the time domain and computational algorithms are derived for D-optimal input signals when parameters of ordinary differential equations are estimated. They are used as building blocks for constructing D-optimal spatio-temporal inputs for systems described by linear partial differential equations of the parabolic and hyperbolic types with constant parameters. Optimality conditions for spatially distributed signals are also obtained for equations of elliptic type in those cases where their eigenfunctions do not depend on unknown constant parameters. These conditions and the resulting algorithms are interesting in their own right and, moreover, they are second building blocks for optimality of spatio-temporal signals. A discussion of the generalizability and possible applications of the results obtained is presented.
The goal of this book is to present Stochastic Calculus at an introductory level and not at its maximum mathematical detail. The author aims to capture as much as possible the spirit of elementary deterministic Calculus, at which students have been already exposed. This assumes a presentation that mimics similar properties of deterministic Calculus, which facilitates understanding of more complicated topics of Stochastic Calculus.
The goal of this book is to present Stochastic Calculus at an introductory level and not at its maximum mathematical detail. The author aims to capture as much as possible the spirit of elementary deterministic Calculus, at which students have been already exposed. This assumes a presentation that mimics similar properties of deterministic Calculus, which facilitates understanding of more complicated topics of Stochastic Calculus.
This graduate-level textbook covers modelling, programming and analysis of stochastic computer simulation experiments, including the mathematical and statistical foundations of simulation and why it works. The book is rigorous and complete, but concise and accessible, providing all necessary background material. Object-oriented programming of simulations is illustrated in Python, while the majority of the book is programming language independent. In addition to covering the foundations of simulation and simulation programming for applications, the text prepares readers to use simulation in their research. A solutions manual for end-of-chapter exercises is available for instructors.
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader.
This book discusses quantum theory as the theory of random (Brownian) motion of small particles (electrons etc.) under external forces. Implying that the Schroedinger equation is a complex-valued evolution equation and the Schroedinger function is a complex-valued evolution function, important applications are given. Readers will learn about new mathematical methods (theory of stochastic processes) in solving problems of quantum phenomena. Readers will also learn how to handle stochastic processes in analyzing physical phenomena.
Interest rate modeling and the pricing of related derivatives remain subjects of increasing importance in financial mathematics and risk management. This book provides an accessible introduction to these topics by a step-by-step presentation of concepts with a focus on explicit calculations. Each chapter is accompanied with exercises and their complete solutions, making the book suitable for advanced undergraduate and graduate level students.This second edition retains the main features of the first edition while incorporating a complete revision of the text as well as additional exercises with their solutions, and a new introductory chapter on credit risk. The stochastic interest rate models considered range from standard short rate to forward rate models, with a treatment of the pricing of related derivatives such as caps and swaptions under forward measures. Some more advanced topics including the BGM model and an approach to its calibration are also covered.
The main goal of this book is to systematically address the mathematical methods that are applied in the study of synchronization of infinite-dimensional evolutionary dissipative or partially dissipative systems. It bases its unique monograph presentation on both general and abstract models and covers several important classes of coupled nonlinear deterministic and stochastic PDEs which generate infinite-dimensional dissipative systems. This text, which adapts readily to advanced graduate coursework in dissipative dynamics, requires some background knowledge in evolutionary equations and introductory functional analysis as well as a basic understanding of PDEs and the theory of random processes. Suitable for researchers in synchronization theory, the book is also relevant to physicists and engineers interested in both the mathematical background and the methods for the asymptotic analysis of coupled infinite-dimensional dissipative systems that arise in continuum mechanics.
This book discusses recent developments in dynamic reliability in multi-state systems (MSS), addressing such important issues as reliability and availability analysis of aging MSS, the impact of initial conditions on MSS reliability and availability, changing importance of components over time in MSS with aging components, and the determination of age-replacement policies. It also describes modifications of traditional methods, such as Markov processes with rewards, as well as a modern mathematical method based on the extended universal generating function technique, the Lz-transform, presenting various successful applications and demonstrating their use in real-world problems. This book provides theoretical insights, information on practical applications, and real-world case studies that are of interest to engineers and industrial managers as well as researchers. It also serves as a textbook or supporting text for graduate and postgraduate courses in industrial, electrical, and mechanical engineering.
This book provides the reader with a background on simulating copulas and multivariate distributions in general. It unifies the scattered literature on the simulation of various families of copulas (elliptical, Archimedean, Marshall-Olkin type, etc.) as well as on different construction principles (factor models, pair-copula construction, etc.). The book is self-contained and unified in presentation and can be used as a textbook for advanced undergraduate or graduate students with a firm background in stochastics. Alongside the theoretical foundation, ready-to-implement algorithms and many examples make this book a valuable tool for anyone who is applying the methodology.
Functional Gaussian Approximation for Dependent Structures develops and analyses mathematical models for phenomena that evolve in time and influence each another. It provides a better understanding of the structure and asymptotic behaviour of stochastic processes. Two approaches are taken. Firstly, the authors present tools for dealing with the dependent structures used to obtain normal approximations. Secondly, they apply normal approximations to various examples. The main tools consist of inequalities for dependent sequences of random variables, leading to limit theorems, including the functional central limit theorem and functional moderate deviation principle. The results point out large classes of dependent random variables which satisfy invariance principles, making possible the statistical study of data coming from stochastic processes both with short and long memory. The dependence structures considered throughout the book include the traditional mixing structures, martingale-like structures, and weakly negatively dependent structures, which link the notion of mixing to the notions of association and negative dependence. Several applications are carefully selected to exhibit the importance of the theoretical results. They include random walks in random scenery and determinantal processes. In addition, due to their importance in analysing new data in economics, linear processes with dependent innovations will also be considered and analysed. |
![]() ![]() You may like...
Monitoring and Assessment in Online…
Angel A Juan, Thanasis Daradoumis, …
Hardcover
R4,955
Discovery Miles 49 550
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Practical Guide to Usability Testing
Joseph S. Dumas, Janice C. Redish
Paperback
R1,042
Discovery Miles 10 420
Topology Optimization - Theory, Methods…
Martin Philip Bendsoe, Ole Sigmund
Hardcover
R3,978
Discovery Miles 39 780
From Science to Society - New Trends in…
Benoit Otjacques, Patrik Hitzelberger, …
Hardcover
R5,032
Discovery Miles 50 320
Model Calibration and Parameter…
Ne-Zheng Sun, Alexander Sun
Hardcover
R4,541
Discovery Miles 45 410
Complements of Higher Mathematics
- Marin Marin, Andreas Oechsner
Hardcover
R2,924
Discovery Miles 29 240
|