Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Stochastic processes have a wide range of applications ranging from image processing, neuroscience, bioinformatics, financial management, and statistics. Mathematical, physical, and engineering systems use stochastic processes for modeling and reasoning phenomena. While comparing AI-stochastic systems with other counterpart systems, we are able to understand their significance, thereby applying new techniques to obtain new real-time results and solutions. Stochastic Processes and Their Applications in Artificial Intelligence opens doors for artificial intelligence experts to use stochastic processes as an effective tool in real-world problems in computational biology, speech recognition, natural language processing, and reinforcement learning. Covering key topics such as social media, big data, and artificial intelligence models, this reference work is ideal for mathematicians, industry professionals, researchers, scholars, academicians, practitioners, instructors, and students.
Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types. Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers.
This book aims to provide an overview of the special functions of fractional calculus and their applications in diffusion and random search processes. The book contains detailed calculations for various examples of anomalous diffusion, random search and stochastic resetting processes, which can be easily followed by the reader, who will be able to reproduce the obtained results. The book will be intended for advanced undergraduate and graduate students and researchers in physics, mathematics and other natural sciences due to the various examples which will be provided in the book.
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation.The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space.The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: * Review of Probability Concepts * Monte Carlo Integration * Generation of Uniform and Non-uniform * Random Numbers: Non-correlated Values * Dynamical Methods * Applications to Statistical Mechanics * Introduction to Stochastic Processes * Numerical Simulation of Ordinary and * Partial Stochastic Differential Equations * Introduction to Master Equations * Numerical Simulations of Master Equations * Hybrid Monte Carlo * Generation of n-Dimensional Correlated * Gaussian Variables * Collective Algorithms for Spin Systems * Histogram Extrapolation * Multicanonical Simulations
The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE's as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for regression functions and in simple but useful results on the dependence of eigenvalues of partial differential operators on their parameters. Examples are provided that reveal sometimes intriguing geometry of spatiotemporal input signals and responses to them. An introduction to optimal experimental design for parameter estimation of regression functions is provided. The emphasis is on functions having a tensor product (Kronecker) structure that is compatible with eigenfunctions of many partial differential operators. New optimality conditions in the time domain and computational algorithms are derived for D-optimal input signals when parameters of ordinary differential equations are estimated. They are used as building blocks for constructing D-optimal spatio-temporal inputs for systems described by linear partial differential equations of the parabolic and hyperbolic types with constant parameters. Optimality conditions for spatially distributed signals are also obtained for equations of elliptic type in those cases where their eigenfunctions do not depend on unknown constant parameters. These conditions and the resulting algorithms are interesting in their own right and, moreover, they are second building blocks for optimality of spatio-temporal signals. A discussion of the generalizability and possible applications of the results obtained is presented.
This graduate-level textbook covers modelling, programming and analysis of stochastic computer simulation experiments, including the mathematical and statistical foundations of simulation and why it works. The book is rigorous and complete, but concise and accessible, providing all necessary background material. Object-oriented programming of simulations is illustrated in Python, while the majority of the book is programming language independent. In addition to covering the foundations of simulation and simulation programming for applications, the text prepares readers to use simulation in their research. A solutions manual for end-of-chapter exercises is available for instructors.
This book discusses quantum theory as the theory of random (Brownian) motion of small particles (electrons etc.) under external forces. Implying that the Schroedinger equation is a complex-valued evolution equation and the Schroedinger function is a complex-valued evolution function, important applications are given. Readers will learn about new mathematical methods (theory of stochastic processes) in solving problems of quantum phenomena. Readers will also learn how to handle stochastic processes in analyzing physical phenomena.
The main goal of this book is to systematically address the mathematical methods that are applied in the study of synchronization of infinite-dimensional evolutionary dissipative or partially dissipative systems. It bases its unique monograph presentation on both general and abstract models and covers several important classes of coupled nonlinear deterministic and stochastic PDEs which generate infinite-dimensional dissipative systems. This text, which adapts readily to advanced graduate coursework in dissipative dynamics, requires some background knowledge in evolutionary equations and introductory functional analysis as well as a basic understanding of PDEs and the theory of random processes. Suitable for researchers in synchronization theory, the book is also relevant to physicists and engineers interested in both the mathematical background and the methods for the asymptotic analysis of coupled infinite-dimensional dissipative systems that arise in continuum mechanics.
This book discusses recent developments in dynamic reliability in multi-state systems (MSS), addressing such important issues as reliability and availability analysis of aging MSS, the impact of initial conditions on MSS reliability and availability, changing importance of components over time in MSS with aging components, and the determination of age-replacement policies. It also describes modifications of traditional methods, such as Markov processes with rewards, as well as a modern mathematical method based on the extended universal generating function technique, the Lz-transform, presenting various successful applications and demonstrating their use in real-world problems. This book provides theoretical insights, information on practical applications, and real-world case studies that are of interest to engineers and industrial managers as well as researchers. It also serves as a textbook or supporting text for graduate and postgraduate courses in industrial, electrical, and mechanical engineering.
This book brings together carefully selected, peer-reviewed works on mathematical biology presented at the BIOMAT International Symposium on Mathematical and Computational Biology, which was held at the Institute of Numerical Mathematics, Russian Academy of Sciences, in October 2017, in Moscow. Topics covered include, but are not limited to, the evolution of spatial patterns on metapopulations, problems related to cardiovascular diseases and modeled by boundary control techniques in hemodynamics, algebraic modeling of the genetic code, and multi-step biochemical pathways. Also, new results are presented on topics like pattern recognition of probability distribution of amino acids, somitogenesis through reaction-diffusion models, mathematical modeling of infectious diseases, and many others. Experts, scientific practitioners, graduate students and professionals working in various interdisciplinary fields will find this book a rich resource for research and applications alike.
This book is dedicated to the systematization and development of models, methods, and algorithms for queuing systems with correlated arrivals. After first setting up the basic tools needed for the study of queuing theory, the authors concentrate on complicated systems: multi-server systems with phase type distribution of service time or single-server queues with arbitrary distribution of service time or semi-Markovian service. They pay special attention to practically important retrial queues, tandem queues, and queues with unreliable servers. Mathematical models of networks and queuing systems are widely used for the study and optimization of various technical, physical, economic, industrial, and administrative systems, and this book will be valuable for researchers, graduate students, and practitioners in these domains.
This book presents a detailed study of the Lanczos potential in general relativity by using tetrad formalisms. It demonstrates that these formalisms offer some simplifications over the tensorial methods, and investigates a general approach to finding the Lanczos potential for algebraic space-time by translating all the tensorial relations concerning the Lanczos potential into the language of tetrad formalisms and using the Newman-Penrose and Geroch-Held-Penrose formalisms. In addition, the book obtains the Lanczos potential for perfect fluid space-time, and applies the results to cosmological models of the universe. In closing, it highlights other methods, apart from tetrad formalisms, for finding the Lanczos potential, as well as further applications of the Newman-Penrose formalism. Given its scope, the book will be of interest to pure mathematicians, theoretical physicists and cosmologists, and will provide common ground for communication among these scientific communities.
This book includes a collection of articles that present recent developments in the fields of optimization and dynamic game theory, economic dynamics, dynamic theory of the firm, and population dynamics and non standard applications of optimal control theory. The authors of the articles are well respected authorities in their fields and are known for their high quality research in the fields of optimization and economic dynamics.
There has been extensive research in the past twenty years devoted to a better understanding of the stable and other closely related infinitely divisible models. The late Professor Stamatis Cambanis, a distinguished educator and researcher, played a special leadership role in the development of these fields from the early seventies until his untimely death in April 1995. This commemorative volume honoring Stamatis Cambanis consists of a collection of research articles devoted to review the state of the art in rapidly developing research areas in Stochastic Processes and to explore new directions of research. The volume is a tribute to the life and work of Stamatis by his students, friends, and colleagues whose personal and professional lives he deeply touched through his generous insights and dedication to his profession.
This book is aimed at researchers, graduate students and engineers who would like to be initiated to Piecewise Deterministic Markov Processes (PDMPs). A PDMP models a deterministic mechanism modified by jumps that occur at random times. The fields of applications are numerous : insurance and risk, biology, communication networks, dependability, supply management, etc. Indeed, the PDMPs studied so far are in fact deterministic functions of CSMPs (Completed Semi-Markov Processes), i.e. semi-Markov processes completed to become Markov processes. This remark leads to considerably broaden the definition of PDMPs and allows their properties to be deduced from those of CSMPs, which are easier to grasp. Stability is studied within a very general framework. In the other chapters, the results become more accurate as the assumptions become more precise. Generalized Chapman-Kolmogorov equations lead to numerical schemes. The last chapter is an opening on processes for which the deterministic flow of the PDMP is replaced with a Markov process. Marked point processes play a key role throughout this book.
This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.
Offering the first comprehensive treatment of the theory of random measures, this book has a very broad scope, ranging from basic properties of Poisson and related processes to the modern theories of convergence, stationarity, Palm measures, conditioning, and compensation. The three large final chapters focus on applications within the areas of stochastic geometry, excursion theory, and branching processes. Although this theory plays a fundamental role in most areas of modern probability, much of it, including the most basic material, has previously been available only in scores of journal articles. The book is primarily directed towards researchers and advanced graduate students in stochastic processes and related areas.
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, is a volume undertaken by the friends and colleagues of Sid Yakowitz in his honor. Fifty internionally known scholars have collectively contributed 30 papers on modeling uncertainty to this volume. Each of these papers was carefully reviewed and in the majority of cases the original submission was revised before being accepted for publication in the book. The papers cover a great variety of topics in probability, statistics, economics, stochastic optimization, control theory, regression analysis, simulation, stochastic programming, Markov decision process, application in the HIV context, and others. There are papers with a theoretical emphasis and others that focus on applications. A number of papers survey the work in a particular area and in a few papers the authors present their personal view of a topic. It is a book with a considerable number of expository articles, which are accessible to a nonexpert - a graduate student in mathematics, statistics, engineering, and economics departments, or just anyone with some mathematical background who is interested in a preliminary exposition of a particular topic. Many of the papers present the state of the art of a specific area or represent original contributions which advance the present state of knowledge. In sum, it is a book of considerable interest to a broad range of academic researchers and students of stochastic systems.
In 1967 Walter K. Hayman published 'Research Problems in Function Theory', a list of 141 problems in seven areas of function theory. In the decades following, this list was extended to include two additional areas of complex analysis, updates on progress in solving existing problems, and over 520 research problems from mathematicians worldwide. It became known as 'Hayman's List'. This Fiftieth Anniversary Edition contains the complete 'Hayman's List' for the first time in book form, along with 31 new problems by leading international mathematicians. This list has directed complex analysis research for the last half-century, and the new edition will help guide future research in the subject. The book contains up-to-date information on each problem, gathered from the international mathematics community, and where possible suggests directions for further investigation. Aimed at both early career and established researchers, this book provides the key problems and results needed to progress in the most important research questions in complex analysis, and documents the developments of the past 50 years.
The intensive exchange between mathematicians and users has led in recent years to a rapid development of stochastic analysis. Of the users, the physicists form perhaps the most important group, giving direction to the mathematicians' research and providing a source of intuition. White noise analysis has emerged as a viable framework for stochastic and infinite dimensional analysis. Another growth area is the theory of stochastic partial differential equations. Gauge field theories are attracting increasing attention. Dirichlet forms provide a fruitful link between the mathematics of Markov processes and the physics of quantum systems. The deterministic-stochastic interface is addressed, as are Euclidean quantum mechanics, excursions of diffusions and the convergence of Markov chains to thermal states.
This book explains in detail the generalized Fourier series technique for the approximate solution of a mathematical model governed by a linear elliptic partial differential equation or system with constant coefficients. The power, sophistication, and adaptability of the method are illustrated in application to the theory of plates with transverse shear deformation, chosen because of its complexity and special features. In a clear and accessible style, the authors show how the building blocks of the method are developed, and comment on the advantages of this procedure over other numerical approaches. An extensive discussion of the computational algorithms is presented, which encompasses their structure, operation, and accuracy in relation to several appropriately selected examples of classical boundary value problems in both finite and infinite domains. The systematic description of the technique, complemented by explanations of the use of the underlying software, will help the readers create their own codes to find approximate solutions to other similar models. The work is aimed at a diverse readership, including advanced undergraduates, graduate students, general scientific researchers, and engineers. The book strikes a good balance between the theoretical results and the use of appropriate numerical applications. The first chapter gives a detailed presentation of the differential equations of the mathematical model, and of the associated boundary value problems with Dirichlet, Neumann, and Robin conditions. The second chapter presents the fundamentals of generalized Fourier series, and some appropriate techniques for orthonormalizing a complete set of functions in a Hilbert space. Each of the remaining six chapters deals with one of the combinations of domain-type (interior or exterior) and nature of the prescribed conditions on the boundary. The appendices are designed to give insight into some of the computational issues that arise from the use of the numerical methods described in the book. Readers may also want to reference the authors' other books Mathematical Methods for Elastic Plates, ISBN: 978-1-4471-6433-3 and Boundary Integral Equation Methods and Numerical Solutions: Thin Plates on an Elastic Foundation, ISBN: 978-3-319-26307-6.
|
You may like...
Teaching and Learning Stochastics…
Carmen Batanero, Egan J. Chernoff
Hardcover
R5,092
Discovery Miles 50 920
|