Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
In this monograph stochastic models of systems analysis are discussed. It covers many aspects and different stages from the construction of mathematical models of real systems, through mathematical analysis of models based on simplification methods, to the interpretation of real stochastic systems. The stochastic models described here share the property that their evolutionary aspects develop under the influence of random factors. It has been assumed that the evolution takes place in a random medium, i.e. unilateral interaction between the system and the medium. As only Markovian models of random medium are considered in this book, the stochastic models described here are determined by two processes, a switching process describing the evolution of the systems and a switching process describing the changes of the random medium. Audience: This book will be of interest to postgraduate students and researchers whose work involves probability theory, stochastic processes, mathematical systems theory, ordinary differential equations, operator theory, or mathematical modelling and industrial mathematics.
This book will cover heuristic optimization techniques and applications in engineering problems. The book will be divided into three sections that will provide coverage of the techniques, which can be employed by engineers, researchers, and manufacturing industries, to improve their productivity with the sole motive of socio-economic development. This will be the first book in the category of heuristic techniques with relevance to engineering problems and achieving optimal solutions. Features Explains the concept of optimization and the relevance of using heuristic techniques for optimal solutions in engineering problems Illustrates the various heuristics techniques Describes evolutionary heuristic techniques like genetic algorithm and particle swarm optimization Contains natural based techniques like ant colony optimization, bee algorithm, firefly optimization, and cuckoo search Offers sample problems and their optimization, using various heuristic techniques
Since the parameters in dynamical systems of biological interest are inherently positive and bounded, bounded noises are a natural way to model the realistic stochastic fluctuations of a biological system that are caused by its interaction with the external world. Bounded Noises in Physics, Biology, and Engineering is the first contributed volume devoted to the modeling of bounded noises in theoretical and applied statistical mechanics, quantitative biology, and mathematical physics. It gives an overview of the current state-of-the-art and is intended to stimulate further research. The volume is organized in four parts. The first part presents the main kinds of bounded noises and their applications in theoretical physics. The theory of bounded stochastic processes is intimately linked to its applications to mathematical and statistical physics, and it would be difficult and unnatural to separate the theory from its physical applications. The second is devoted to framing bounded noises in the theory of random dynamical systems and random bifurcations, while the third is devoted to applications of bounded stochastic processes in biology, one of the major areas of potential applications of this subject. The final part concerns the application of bounded stochastic processes in mechanical and structural engineering, the area where the renewed interest for non-Gaussian bounded noises started. Pure mathematicians working on stochastic calculus will find here a rich source of problems that are challenging from the point of view of contemporary nonlinear analysis. Bounded Noises in Physics, Biology, and Engineering is intended for scientists working on stochastic processes with an interest in both fundamental issues and applications. It will appeal to a broad range of applied mathematicians, mathematical biologists, physicists, engineers, and researchers in other fields interested in complexity theory. It is accessible to anyone with a working knowledge of stochastic modeling, from advanced undergraduates to senior researchers.
This is a development of the book entitled Multidimensional Second Order Stochastic Processes. It provides a research expository treatment of infinite-dimensional stationary and nonstationary stochastic processes or time series, based on Hilbert and Banach space-valued second order random variables. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramer and Karhunen classes as well as the stationary class. A new type of the Radon-Nikodym derivative of a Banach space-valued measure is introduced, together with Schauder basic measures, to study uniformly bounded linearly stationary processes.Emphasis is on the use of functional analysis and harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Generalizations are made to consider Banach space-valued stochastic processes to include processes of pth order for p 1. Readers may find that the covariance kernel is always emphasized and reveals another aspect of stochastic processes.This book is intended not only for probabilists and statisticians, but also for functional analysts and communication engineers.
This work contains a collection of lectures on stochastic processes. The material is arranged in such a way to fit a lecture time of one-and-a-half hours, in order to make the book convenient for lecturers and students. The book can be used in the preparation of courses in stochastic processes for which an understanding of basic notions of mathematical analysis, theory of complex functions, theory of differential equations and probability theory is required. The subjects in the book have different levels of abstraction.
This contributed volume provides an extensive account of research and expository papers in a broad domain of mathematical analysis and its various applications to a multitude of fields. Presenting the state-of-the-art knowledge in a wide range of topics, the book will be useful to graduate students and researchers in theoretical and applicable interdisciplinary research. The focus is on several subjects including: optimal control problems, optimal maintenance of communication networks, optimal emergency evacuation with uncertainty, cooperative and noncooperative partial differential systems, variational inequalities and general equilibrium models, anisotropic elasticity and harmonic functions, nonlinear stochastic differential equations, operator equations, max-product operators of Kantorovich type, perturbations of operators, integral operators, dynamical systems involving maximal monotone operators, the three-body problem, deceptive systems, hyperbolic equations, strongly generalized preinvex functions, Dirichlet characters, probability distribution functions, applied statistics, integral inequalities, generalized convexity, global hyperbolicity of spacetimes, Douglas-Rachford methods, fixed point problems, the general Rodrigues problem, Banach algebras, affine group, Gibbs semigroup, relator spaces, sparse data representation, Meier-Keeler sequential contractions, hybrid contractions, and polynomial equations. Some of the works published within this volume provide as well guidelines for further research and proposals for new directions and open problems.
Malliavin Calculus in Finance: Theory and Practice aims to introduce the study of stochastic volatility (SV) models via Malliavin Calculus. Malliavin calculus has had a profound impact on stochastic analysis. Originally motivated by the study of the existence of smooth densities of certain random variables, it has proved to be a useful tool in many other problems. In particular, it has found applications in quantitative finance, as in the computation of hedging strategies or the efficient estimation of the Greeks. The objective of this book is to offer a bridge between theory and practice. It shows that Malliavin calculus is an easy-to-apply tool that allows us to recover, unify, and generalize several previous results in the literature on stochastic volatility modeling related to the vanilla, the forward, and the VIX implied volatility surfaces. It can be applied to local, stochastic, and also to rough volatilities (driven by a fractional Brownian motion) leading to simple and explicit results. Features Intermediate-advanced level text on quantitative finance, oriented to practitioners with a basic background in stochastic analysis, which could also be useful for researchers and students in quantitative finance Includes examples on concrete models such as the Heston, the SABR and rough volatilities, as well as several numerical experiments and the corresponding Python scripts Covers applications on vanillas, forward start options, and options on the VIX. The book also has a Github repository with the Python library corresponding to the numerical examples in the text. The library has been implemented so that the users can re-use the numerical code for building their examples. The repository can be accessed here: https://bit.ly/2KNex2Y.
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to work with stochastic calculus as well as with its applications."-Zentralblatt (from review of the First Edition)
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB (R) codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.
This volume is a collection of research works to honor the late Professor Mark H.A. Davis, whose pioneering work in the areas of Stochastic Processes, Filtering, and Stochastic Optimization spans more than five decades. Invited authors include his dissertation advisor, past collaborators, colleagues, mentees, and graduate students of Professor Davis, as well as scholars who have worked in the above areas. Their contributions may expand upon topics in piecewise deterministic processes, pathwise stochastic calculus, martingale methods in stochastic optimization, filtering, mean-field games, time-inconsistency, as well as impulse, singular, risk-sensitive and robust stochastic control.
Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts: Part I: Introduction to optimization, benchmarking, and statistical analysis - Chapters 2-4. Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms - Chapters 5-7. Part III: Implementation and application of Deep Statistical Comparison - Chapter 8.
Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
In many branches of science relevant observations are taken sequentially over time. Bayesian Analysis of Time Series discusses how to use models that explain the probabilistic characteristics of these time series and then utilizes the Bayesian approach to make inferences about their parameters. This is done by taking the prior information and via Bayes theorem implementing Bayesian inferences of estimation, testing hypotheses, and prediction. The methods are demonstrated using both R and WinBUGS. The R package is primarily used to generate observations from a given time series model, while the WinBUGS packages allows one to perform a posterior analysis that provides a way to determine the characteristic of the posterior distribution of the unknown parameters. Features Presents a comprehensive introduction to the Bayesian analysis of time series. Gives many examples over a wide variety of fields including biology, agriculture, business, economics, sociology, and astronomy. Contains numerous exercises at the end of each chapter many of which use R and WinBUGS. Can be used in graduate courses in statistics and biostatistics, but is also appropriate for researchers, practitioners and consulting statisticians. About the author Lyle D. Broemeling, Ph.D., is Director of Broemeling and Associates Inc., and is a consulting biostatistician. He has been involved with academic health science centers for about 20 years and has taught and been a consultant at the University of Texas Medical Branch in Galveston, The University of Texas MD Anderson Cancer Center and the University of Texas School of Public Health. His main interest is in developing Bayesian methods for use in medical and biological problems and in authoring textbooks in statistics. His previous books for Chapman & Hall/CRC include Bayesian Biostatistics and Diagnostic Medicine, and Bayesian Methods for Agreement.
Markov Random Flights is the first systematic presentation of the theory of Markov random flights in the Euclidean spaces of different dimensions. Markov random flights is a stochastic dynamic system subject to the control of an external Poisson process and represented by the stochastic motion of a particle that moves at constant finite speed and changes its direction at random Poisson time instants. The initial (and each new) direction is taken at random according to some probability distribution on the unit sphere. Such stochastic motion is the basic model for describing many real finite-velocity transport phenomena arising in statistical physics, chemistry, biology, environmental science and financial markets. Markov random flights acts as an effective tool for modelling the slow and super-slow diffusion processes arising in various fields of science and technology. Features: Provides the first systematic presentation of the theory of Markov random flights in the Euclidean spaces of different dimensions. Suitable for graduate students and specialists and professionals in applied areas. Introduces a new unified approach based on the powerful methods of mathematical analysis, such as integral transforms, generalized, hypergeometric and special functions. Author Alexander D. Kolesnik is a professor, Head of Laboratory (2015-2019) and principal researcher (since 2020) at the Institute of Mathematics and Computer Science, Kishinev (Chisinau), Moldova. He graduated from Moldova State University in 1980 and earned his PhD from the Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev in 1991. He also earned a PhD Habilitation in mathematics and physics with specialization in stochastic processes, probability and statistics conferred by the Specialized Council at the Institute of Mathematics of the National Academy of Sciences of Ukraine and confirmed by the Supreme Attestation Commission of Ukraine in 2010. His research interests include: probability and statistics, stochastic processes, random evolutions, stochastic dynamic systems, random flights, diffusion processes, transport processes, random walks, stochastic processes in random environments, partial differential equations in stochastic models, statistical physics and wave processes. Dr. Kolesnik has published more than 70 scientific publications, mostly in high-standard international journals and a monograph. He has also acted as external referee for many outstanding international journals in mathematics and physics, being awarded by the "Certificate of Outstanding Contribution in Reviewing" from the journal "Stochastic Processes and their Applications." He was the visiting professor and scholarship holder at universities in Italy and Germany and member of the Board of Global Advisors of the International Federation of Nonlinear Analysts (IFNA), United States of America.
Stochastic Modeling of Scientific Data combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models in a clear, thoughtful and succinct manner. The distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analyzed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward backward algorithm for analyzing hidden Markov models is presented. The strength of this text lies in the use of informal language that makes the topic more accessible to non-mathematicians. The combinations of hard science topics with stochastic processes and their statistical inference puts it in a new category of probability textbooks. The numerous examples and exercises are drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics.
Introduction to Probability and Statistics for Engineers and Scientists, Sixth Edition, uniquely emphasizes how probability informs statistical problems, thus helping readers develop an intuitive understanding of the statistical procedures commonly used by practicing engineers and scientists. Utilizing real data from actual studies across life science, engineering, computing and business, this useful introduction supports reader comprehension through a wide variety of exercises and examples. End-of-chapter reviews of materials highlight key ideas, also discussing the risks associated with the practical application of each material. In the new edition, coverage includes information on Big Data and the use of R. This book is intended for upper level undergraduate and graduate students taking a probability and statistics course in engineering programs as well as those across the biological, physical and computer science departments. It is also appropriate for scientists, engineers and other professionals seeking a reference of foundational content and application to these fields.
Now in its second edition, this book gives a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. In the first part the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. This revised edition includes two brand new chapters surveying recent developments in the area and an even more comprehensive bibliography, making this book an essential and up-to-date resource for all those working in stochastic differential equations.
The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South American and Asian scholars.
This is a graduate level textbook that covers the fundamental
topics in queuing theory. The book has a broad coverage of methods
to calculate important probabilities, and gives attention to
proving the general theorems. It includes many recent topics, such
as server-vacation models, diffusion approximations and optimal
operating policies, and more about bulk-arrival and bull-service
models than other general texts.
Quantitative Methods in Transportation provides the most useful, simple, and advanced quantitative techniques for solving real-life transportation engineering problems. It aims to help transportation engineers and analysts to predict travel and freight demand, plan new transportation networks, and develop various traffic control strategies that are safer, more cost effective, and greener. Transportation networks can be exceptionally large, and this makes many transportation problems combinatorial, and the challenges are compounded by the stochastic and independent nature of trip-planners decision making. Methods outlined in this book range from linear programming, multi-attribute decision making, data envelopment analysis, probability theory, and simulation to computer techniques such as genetic algorithms, simulated annealing, tabu search, ant colony optimization, and bee colony optimization. The book is supported with problems and has a solutions manual to aid course instructors.
Probability has been an important part of mathematics for more than three centuries. Moreover, its importance has grown in recent decades, since the computing power now widely available has allowed probabilistic and stochastic techniques to attack problems such as speech and image processing, geophysical exploration, radar, sonar, etc. -- all of which are covered here. The book contains three exceptionally clear expositions on wavelets, frames and their applications. A further extremely active current research area, well covered here, is the relation between probability and partial differential equations, including probabilistic representations of solutions to elliptic and parabolic PDEs. New approaches, such as the PDE method for large deviation problems, and stochastic optimal control and filtering theory, are beginning to yield their secrets. Another topic dealt with is the application of probabilistic techniques to mathematical analysis. Finally, there are clear explanations of normal numbers and dynamic systems, and the influence of probability on our daily lives.
This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, experiments, and applied probability and statistics.
An introduction to general theories of stochastic processes and modern martingale theory. The volume focuses on consistency, stability and contractivity under geometric invariance in numerical analysis, and discusses problems related to implementation, simulation, variable step size algorithms, and random number generation. |
You may like...
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,500
Discovery Miles 25 000
Foundations and Methods of Stochastic…
Barry L. Nelson, Linda Pei
Hardcover
R2,992
Discovery Miles 29 920
The Theory of Queuing Systems with…
Alexander N. Dudin, Valentina I. Klimenok, …
Hardcover
R2,859
Discovery Miles 28 590
Two-Dimensional Random Walk - From Path…
Serguei Popov
Hardcover
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
The Generalized Fourier Series Method…
Christian Constanda, Dale Doty
Hardcover
R1,492
Discovery Miles 14 920
|