![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Offering the first comprehensive treatment of the theory of random measures, this book has a very broad scope, ranging from basic properties of Poisson and related processes to the modern theories of convergence, stationarity, Palm measures, conditioning, and compensation. The three large final chapters focus on applications within the areas of stochastic geometry, excursion theory, and branching processes. Although this theory plays a fundamental role in most areas of modern probability, much of it, including the most basic material, has previously been available only in scores of journal articles. The book is primarily directed towards researchers and advanced graduate students in stochastic processes and related areas.
Is the first volume devoted entirely to stochastic inverse problems. Includes survey articles which makes it self-contained. Aimed at a diverse audience, including applied mathematicians, engineers, economists, and professionals from academia. Includes the most recent developments on the subject, which so far have only been available in the research literature.
Improve Your Probability of Mastering This Topic
This book covers recent developments in the non-standard asymptotics of the mathematical narrow escape problem in stochastic theory, as well as applications of the narrow escape problem in cell biology. The first part of the book concentrates on mathematical methods, including advanced asymptotic methods in partial equations, and is aimed primarily at applied mathematicians and theoretical physicists who are interested in biological applications. The second part of the book is intended for computational biologists, theoretical chemists, biochemists, biophysicists, and physiologists. It includes a summary of output formulas from the mathematical portion of the book and concentrates on their applications in modeling specific problems in theoretical molecular and cellular biology. Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small spatial scales. These may be small binding sites inside or on the surface of the cell, or narrow passages between subcellular compartments. The great disparity in spatial scales is the key to controlling cell function by structure. This volume reports recent progress on resolving analytical and numerical difficulties in extracting properties from experimental data, biophysical models, and from Brownian dynamics simulations of diffusion in multi-scale structures.
Complex high-technology devices are in growing use in industry, service sectors, and everyday life. Their reliability and maintenance is of utmost importance in view of their cost and critical functions. This book focuses on this theme and is intended to serve as a graduate-level textbook and reference book for scientists and academics in the field. The chapters are grouped into five complementary parts that cover the most important aspects of reliability and maintenance: stochastic models of reliability and maintenance, decision models involving optimal replacement and repair, stochastic methods in software engineering, computational methods and simulation, and maintenance management systems. This wide range of topics provides the reader with a complete picture in a self-contained volume.
Since the appearance of seminal works by R. Merton, and F. Black and M. Scholes, stochastic processes have assumed an increasingly important role in the development of the mathematical theory of finance. This work examines, in some detail, that part of stochastic finance pertaining to option pricing theory. Thus the exposition is confined to areas of stochastic finance that are relevant to the theory, omitting such topics as futures and term-structure. This self-contained work begins with five introductory chapters on stochastic analysis, making it accessible to readers with little or no prior knowledge of stochastic processes or stochastic analysis. These chapters cover the essentials of Ito's theory of stochastic integration, integration with respect to semimartingales, Girsanov's Theorem, and a brief introduction to stochastic differential equations. Subsequent chapters treat more specialized topics, including option pricing in discrete time, continuous time trading, arbitrage, complete markets, European options (Black and Scholes Theory), American options, Russian options, discrete approximations, and asset pricing with stochastic volatility. In several chapters, new results are presented. A unique feature of the book is its emphasis on arbitrage, in particular, the relationship between arbitrage and equivalent martingale measures (EMM), and the derivation of necessary and sufficient conditions for no arbitrage (NA). {\it Introduction to Option Pricing Theory} is intended for students and researchers in statistics, applied mathematics, business, or economics, who have a background in measure theory and have completed probability theory at the intermediate level. The work lends itself to self-study, as well as to a one-semester course at the graduate level.
The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy 2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin l, 2, 3]. In 1931, Kolmogorov l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman 1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals)."
This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.
This book is aimed at researchers, graduate students and engineers who would like to be initiated to Piecewise Deterministic Markov Processes (PDMPs). A PDMP models a deterministic mechanism modified by jumps that occur at random times. The fields of applications are numerous : insurance and risk, biology, communication networks, dependability, supply management, etc. Indeed, the PDMPs studied so far are in fact deterministic functions of CSMPs (Completed Semi-Markov Processes), i.e. semi-Markov processes completed to become Markov processes. This remark leads to considerably broaden the definition of PDMPs and allows their properties to be deduced from those of CSMPs, which are easier to grasp. Stability is studied within a very general framework. In the other chapters, the results become more accurate as the assumptions become more precise. Generalized Chapman-Kolmogorov equations lead to numerical schemes. The last chapter is an opening on processes for which the deterministic flow of the PDMP is replaced with a Markov process. Marked point processes play a key role throughout this book.
"Stochastic Processes in Quantum Physics" addresses the question 'What is the mathematics needed for describing the movement of quantum particles', and shows that it is the theory of stochastic (in particular Markov) processes and that a relativistic quantum particle has pure-jump sample paths while sample paths of a non-relativistic quantum particle are continuous. Together with known techniques, some new stochastic methods are applied in solving the equation of motion and the equation of dynamics of relativistic quantum particles. The problem of the origin of universes is discussed as an application of the theory. The text is almost self-contained and requires only an elementary knowledge of probability theory at the graduate level, and some selected chapters can be used as (sub-)textbooks for advanced courses on stochastic processes, quantum theory and theoretical chemistry.
This research monograph develops the Hamilton-Jacobi-Bellman theory via dynamic programming principle for a class of optimal control problems for stochastic hereditary differential equations (SHDEs) driven by a standard Brownian motion and with a bounded or an infinite but fading memory. These equations represent a class of stochastic infinite-dimensional systems that become increasingly important and have wide range of applications in physics, chemistry, biology, engineering and economics/finance. This monograph can be used as a research reference for researchers and advanced graduate students who have special interest in optimal control theory and applications of stochastic hereditary systems.
This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.
"Markov Chains: Analytic and Monte Carlo Computations" introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are necessary to the reader, as well as giving more advanced measure-theoretic notions.
Offering a viable solution to the long-standing problem of estimating the abundance of rare, clustered populations, adaptive sampling designs are rapidly gaining prominence in the natural and social sciences as well as in other fields with inherently difficult sampling situations. In marked contrast to conventional sampling designs, in which the entire sample of units to be observed is fixed prior to the survey, adaptive sampling strategies allow for increased sampling intensity depending upon observations made during the survey. For example, in a survey to assess the abundance of a rare animal species, neighboring sites may be added to the sample whenever the species is encountered during the survey. In an epidemiological survey of a contagious or genetically linked disease, sampling intensity may be increased whenever prevalence of the disease is encountered. Written by two acknowledged experts in this emerging field, this book offers researchers their first comprehensive introduction to adaptive sampling. An ideal reference for statisticians conducting research in survey designs and spatial statistics as well as researchers working in the environmental, ecological, public health, and biomedical sciences. Adaptive Sampling:
This book provides an extensive, systematic overview of the modern theory of telegraph processes and their multidimensional counterparts, together with numerous fruitful applications in financial modelling. Focusing on stochastic processes of bounded variation instead of classical diffusion, or more generally, Levy processes, has two obvious benefits. First, the mathematical technique is much simpler, which helps to concentrate on the key problems of stochastic analysis and applications, including financial market modelling. Second, this approach overcomes some shortcomings of the (parabolic) nature of classical diffusions that contradict physical intuition, such as infinite propagation velocity and infinite total variation of paths. In this second edition, some sections of the previous text are included without any changes, while most others have been expanded and significantly revised. These are supplemented by predominantly new results concerning piecewise linear processes with arbitrary sequences of velocities, jump amplitudes, and switching intensities. The chapter on functionals of the telegraph process has been significantly expanded by adding sections on exponential functionals, telegraph meanders and running extrema, the times of the first passages of telegraph processes with alternating random jumps, and distribution of the Euclidean distance between two independent telegraph processes. A new chapter on the multidimensional counterparts of the telegraph processes is also included. The book is intended for graduate students in mathematics, probability, statistics and quantitative finance, and for researchers working at academic institutions, in industry and engineering. It can also be used by university lecturers and professionals in various applied areas.
This is a volume consisting of selected papers that were presented at the 3rd St. Petersburg Workshop on Simulation held at St. Petersburg, Russia, during June 28-July 3, 1998. The Workshop is a regular international event devoted to mathematical problems of simulation and applied statistics organized by the Department of Stochastic Simulation at St. Petersburg State University in cooperation with INFORMS College on Simulation (USA). Its main purpose is to exchange ideas between researchers from Russia and from the West as well as from other coun tries throughout the World. The 1st Workshop was held during May 24-28, 1994, and the 2nd workshop was held during June 18-21, 1996. The selected proceedings of the 2nd Workshop was published as a special issue of the Journal of Statistical Planning and Inference. Russian mathematical tradition has been formed by such genius as Tchebysh eff, Markov and Kolmogorov whose ideas have formed the basis for contempo rary probabilistic models. However, for many decades now, Russian scholars have been isolated from their colleagues in the West and as a result their mathe matical contributions have not been widely known. One of the primary reasons for these workshops is to bring the contributions of Russian scholars into lime light and we sincerely hope that this volume helps in this specific purpose."
This book explains in detail the generalized Fourier series technique for the approximate solution of a mathematical model governed by a linear elliptic partial differential equation or system with constant coefficients. The power, sophistication, and adaptability of the method are illustrated in application to the theory of plates with transverse shear deformation, chosen because of its complexity and special features. In a clear and accessible style, the authors show how the building blocks of the method are developed, and comment on the advantages of this procedure over other numerical approaches. An extensive discussion of the computational algorithms is presented, which encompasses their structure, operation, and accuracy in relation to several appropriately selected examples of classical boundary value problems in both finite and infinite domains. The systematic description of the technique, complemented by explanations of the use of the underlying software, will help the readers create their own codes to find approximate solutions to other similar models. The work is aimed at a diverse readership, including advanced undergraduates, graduate students, general scientific researchers, and engineers. The book strikes a good balance between the theoretical results and the use of appropriate numerical applications. The first chapter gives a detailed presentation of the differential equations of the mathematical model, and of the associated boundary value problems with Dirichlet, Neumann, and Robin conditions. The second chapter presents the fundamentals of generalized Fourier series, and some appropriate techniques for orthonormalizing a complete set of functions in a Hilbert space. Each of the remaining six chapters deals with one of the combinations of domain-type (interior or exterior) and nature of the prescribed conditions on the boundary. The appendices are designed to give insight into some of the computational issues that arise from the use of the numerical methods described in the book. Readers may also want to reference the authors' other books Mathematical Methods for Elastic Plates, ISBN: 978-1-4471-6433-3 and Boundary Integral Equation Methods and Numerical Solutions: Thin Plates on an Elastic Foundation, ISBN: 978-3-319-26307-6.
This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for individual readers. Subjects covered include Brownian motion, stochastic calculus, stochastic differential equations, Markov processes, weak convergence of processes and semigroup theory. Applications include the Black-Scholes formula for the pricing of derivatives in financial mathematics, the Kalman-Bucy filter used in the US space program and also theoretical applications to partial differential equations and analysis. Short, readable chapters aim for clarity rather than full generality. More than 350 exercises are included to help readers put their new-found knowledge to the test and to prepare them for tackling the research literature.
Stochastic Differential Equations for Science and Engineering is aimed at students at the M.Sc. and PhD level. The book describes the mathematical construction of stochastic differential equations with a level of detail suitable to the audience, while also discussing applications to estimation, stability analysis, and control. The book includes numerous examples and challenging exercises. Computational aspects are central to the approach taken in the book, so the text is accompanied by a repository on GitHub containing a toolbox in R which implements algorithms described in the book, code that regenerates all figures, and solutions to exercises. Features: Contains numerous exercises, examples, and applications Suitable for science and engineering students at Master's or PhD level Thorough treatment of the mathematical theory combined with an accessible treatment of motivating examples GitHub repository available at: https://github.com/Uffe-H-Thygesen/SDEbook and https://github.com/Uffe-H-Thygesen/SDEtools
Stochastic modeling is a set of quantitative techniques for analyzing practical systems with random factors. This area is highly technical and mainly developed by mathematicians. Most existing books are for those with extensive mathematical training; this book minimizes that need and makes the topics easily understandable. Fundamentals of Stochastic Models offers many practical examples and applications and bridges the gap between elementary stochastics process theory and advanced process theory. It addresses both performance evaluation and optimization of stochastic systems and covers different modern analysis techniques such as matrix analytical methods and diffusion and fluid limit methods. It goes on to explore the linkage between stochastic models, machine learning, and artificial intelligence, and discusses how to make use of intuitive approaches instead of traditional theoretical approaches. The goal is to minimize the mathematical background of readers that is required to understand the topics covered in this book. Thus, the book is appropriate for professionals and students in industrial engineering, business and economics, computer science, and applied mathematics.
Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
The volume includes a collection of peer-reviewed contributions from among those presented at the main conference organized yearly by the Mexican Statistical Association (AME) and every two years by a Latin-American Confederation of Statistical Societies. For the 2018 edition, particular attention was placed on the analysis of highly complex or large data sets, which have come to be known as "big data". Statistical research in Latin America is prolific and research networks span within and outside the region. The goal of this volume is to provide access to selected works from Latin-American collaborators and their research networks to a wider audience. New methodological advances, motivated in part by the challenges of a data-driven world and the Latin American context, will be of interest to academics and practitioners around the world.
A collection of 20 refereed research or review papers presented at a six-day seminar in Switzerland. The contributions focus on stochastic analysis, its applications to the engineering sciences, and stochastic methods in financial models, which was the subject of a minisymposium.
It is frequently observed that most decision-making problems involve several objectives, and the aim of the decision makers is to find the best decision by fulfilling the aspiration levels of all the objectives. Multi-objective decision making is especially suitable for the design and planning steps and allows a decision maker to achieve the optimal or aspired goals by considering the various interactions of the given constraints. Multi-Objective Stochastic Programming in Fuzzy Environments discusses optimization problems with fuzzy random variables following several types of probability distributions and different types of fuzzy numbers with different defuzzification processes in probabilistic situations. The content within this publication examines such topics as waste management, agricultural systems, and fuzzy set theory. It is designed for academicians, researchers, and students.
Stochastic portfolio theory is a mathematical methodology for constructing stock portfolios, analyzing the behavior of portfolios, and understanding the structure of equity markets. Stochastic portfolio theory has both theoretical and practical applications: as a theoretical tool it can be used to construct examples of theoretical portfolios with specified characteristics, and to determine the distributional component of portfolio return. On a practical level, stochastic portfolio theory has been the basis for strategies used for over a decade by the institutional equity manager INTECH, where the author has served as chief investment officer. This book is an introduction to stochastic portfolio theory for investment professionals and for students of mathematical finance. Each chapter includes a number of problems of varying levels of difficulty and a brief summary of the principal results of the chapter, without proofs. |
You may like...
Handbook of VLSI Microlithography…
William B. Glendinning, John N. Helbert
Hardcover
R1,238
Discovery Miles 12 380
Computer Vision in Control Systems-4…
Margarita N. Favorskaya, Lakhmi C. Jain
Hardcover
R2,715
Discovery Miles 27 150
Butterflies and Moths of North America…
Herman 1836-1901 Strecker
Hardcover
R886
Discovery Miles 8 860
Handbook of Zoology With Examples From…
J W (John William) Dawson
Hardcover
R888
Discovery Miles 8 880
|