![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
"Stochastic Processes in Quantum Physics" addresses the question 'What is the mathematics needed for describing the movement of quantum particles', and shows that it is the theory of stochastic (in particular Markov) processes and that a relativistic quantum particle has pure-jump sample paths while sample paths of a non-relativistic quantum particle are continuous. Together with known techniques, some new stochastic methods are applied in solving the equation of motion and the equation of dynamics of relativistic quantum particles. The problem of the origin of universes is discussed as an application of the theory. The text is almost self-contained and requires only an elementary knowledge of probability theory at the graduate level, and some selected chapters can be used as (sub-)textbooks for advanced courses on stochastic processes, quantum theory and theoretical chemistry.
Since the appearance of seminal works by R. Merton, and F. Black and M. Scholes, stochastic processes have assumed an increasingly important role in the development of the mathematical theory of finance. This work examines, in some detail, that part of stochastic finance pertaining to option pricing theory. Thus the exposition is confined to areas of stochastic finance that are relevant to the theory, omitting such topics as futures and term-structure. This self-contained work begins with five introductory chapters on stochastic analysis, making it accessible to readers with little or no prior knowledge of stochastic processes or stochastic analysis. These chapters cover the essentials of Ito's theory of stochastic integration, integration with respect to semimartingales, Girsanov's Theorem, and a brief introduction to stochastic differential equations. Subsequent chapters treat more specialized topics, including option pricing in discrete time, continuous time trading, arbitrage, complete markets, European options (Black and Scholes Theory), American options, Russian options, discrete approximations, and asset pricing with stochastic volatility. In several chapters, new results are presented. A unique feature of the book is its emphasis on arbitrage, in particular, the relationship between arbitrage and equivalent martingale measures (EMM), and the derivation of necessary and sufficient conditions for no arbitrage (NA). {\it Introduction to Option Pricing Theory} is intended for students and researchers in statistics, applied mathematics, business, or economics, who have a background in measure theory and have completed probability theory at the intermediate level. The work lends itself to self-study, as well as to a one-semester course at the graduate level.
This research monograph develops the Hamilton-Jacobi-Bellman theory via dynamic programming principle for a class of optimal control problems for stochastic hereditary differential equations (SHDEs) driven by a standard Brownian motion and with a bounded or an infinite but fading memory. These equations represent a class of stochastic infinite-dimensional systems that become increasingly important and have wide range of applications in physics, chemistry, biology, engineering and economics/finance. This monograph can be used as a research reference for researchers and advanced graduate students who have special interest in optimal control theory and applications of stochastic hereditary systems.
This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.
"Markov Chains: Analytic and Monte Carlo Computations" introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are necessary to the reader, as well as giving more advanced measure-theoretic notions.
This is a volume consisting of selected papers that were presented at the 3rd St. Petersburg Workshop on Simulation held at St. Petersburg, Russia, during June 28-July 3, 1998. The Workshop is a regular international event devoted to mathematical problems of simulation and applied statistics organized by the Department of Stochastic Simulation at St. Petersburg State University in cooperation with INFORMS College on Simulation (USA). Its main purpose is to exchange ideas between researchers from Russia and from the West as well as from other coun tries throughout the World. The 1st Workshop was held during May 24-28, 1994, and the 2nd workshop was held during June 18-21, 1996. The selected proceedings of the 2nd Workshop was published as a special issue of the Journal of Statistical Planning and Inference. Russian mathematical tradition has been formed by such genius as Tchebysh eff, Markov and Kolmogorov whose ideas have formed the basis for contempo rary probabilistic models. However, for many decades now, Russian scholars have been isolated from their colleagues in the West and as a result their mathe matical contributions have not been widely known. One of the primary reasons for these workshops is to bring the contributions of Russian scholars into lime light and we sincerely hope that this volume helps in this specific purpose."
This book provides an extensive, systematic overview of the modern theory of telegraph processes and their multidimensional counterparts, together with numerous fruitful applications in financial modelling. Focusing on stochastic processes of bounded variation instead of classical diffusion, or more generally, Levy processes, has two obvious benefits. First, the mathematical technique is much simpler, which helps to concentrate on the key problems of stochastic analysis and applications, including financial market modelling. Second, this approach overcomes some shortcomings of the (parabolic) nature of classical diffusions that contradict physical intuition, such as infinite propagation velocity and infinite total variation of paths. In this second edition, some sections of the previous text are included without any changes, while most others have been expanded and significantly revised. These are supplemented by predominantly new results concerning piecewise linear processes with arbitrary sequences of velocities, jump amplitudes, and switching intensities. The chapter on functionals of the telegraph process has been significantly expanded by adding sections on exponential functionals, telegraph meanders and running extrema, the times of the first passages of telegraph processes with alternating random jumps, and distribution of the Euclidean distance between two independent telegraph processes. A new chapter on the multidimensional counterparts of the telegraph processes is also included. The book is intended for graduate students in mathematics, probability, statistics and quantitative finance, and for researchers working at academic institutions, in industry and engineering. It can also be used by university lecturers and professionals in various applied areas.
This book explains in detail the generalized Fourier series technique for the approximate solution of a mathematical model governed by a linear elliptic partial differential equation or system with constant coefficients. The power, sophistication, and adaptability of the method are illustrated in application to the theory of plates with transverse shear deformation, chosen because of its complexity and special features. In a clear and accessible style, the authors show how the building blocks of the method are developed, and comment on the advantages of this procedure over other numerical approaches. An extensive discussion of the computational algorithms is presented, which encompasses their structure, operation, and accuracy in relation to several appropriately selected examples of classical boundary value problems in both finite and infinite domains. The systematic description of the technique, complemented by explanations of the use of the underlying software, will help the readers create their own codes to find approximate solutions to other similar models. The work is aimed at a diverse readership, including advanced undergraduates, graduate students, general scientific researchers, and engineers. The book strikes a good balance between the theoretical results and the use of appropriate numerical applications. The first chapter gives a detailed presentation of the differential equations of the mathematical model, and of the associated boundary value problems with Dirichlet, Neumann, and Robin conditions. The second chapter presents the fundamentals of generalized Fourier series, and some appropriate techniques for orthonormalizing a complete set of functions in a Hilbert space. Each of the remaining six chapters deals with one of the combinations of domain-type (interior or exterior) and nature of the prescribed conditions on the boundary. The appendices are designed to give insight into some of the computational issues that arise from the use of the numerical methods described in the book. Readers may also want to reference the authors' other books Mathematical Methods for Elastic Plates, ISBN: 978-1-4471-6433-3 and Boundary Integral Equation Methods and Numerical Solutions: Thin Plates on an Elastic Foundation, ISBN: 978-3-319-26307-6.
It is frequently observed that most decision-making problems involve several objectives, and the aim of the decision makers is to find the best decision by fulfilling the aspiration levels of all the objectives. Multi-objective decision making is especially suitable for the design and planning steps and allows a decision maker to achieve the optimal or aspired goals by considering the various interactions of the given constraints. Multi-Objective Stochastic Programming in Fuzzy Environments discusses optimization problems with fuzzy random variables following several types of probability distributions and different types of fuzzy numbers with different defuzzification processes in probabilistic situations. The content within this publication examines such topics as waste management, agricultural systems, and fuzzy set theory. It is designed for academicians, researchers, and students.
Discrete stochastic models are tools that allow us to understand, control, and optimize engineering systems and processes. This book provides real-life examples and illustrations of models in reliability engineering and statistical quality control and establishes a connection between the theoretical framework and their engineering applications. The book describes discrete stochastic models along with real-life examples and explores not only well-known models, but also comparatively lesser known ones. It includes definitions, concepts, and methods with a clear understanding of their use in reliability engineering and statistical quality control fields. Also covered are the recent advances and established connections between the theoretical framework of discrete stochastic models and their engineering applications. An ideal reference for researchers in academia and graduate students working in the fields of operations research, reliability engineering, quality control, and probability and statistics.
This book covers a wide range of problems involving the applications of stochastic processes, stochastic calculus, large deviation theory, group representation theory and quantum statistics to diverse fields in dynamical systems, electromagnetics, statistical signal processing, quantum information theory, quantum neural network theory, quantum filtering theory, quantum electrodynamics, quantum general relativity, string theory, problems in biology and classical and quantum fluid dynamics. The selection of the problems has been based on courses taught by the author to undergraduates and postgraduates in Electronics and Communications Engineering. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).
Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
A collection of 20 refereed research or review papers presented at a six-day seminar in Switzerland. The contributions focus on stochastic analysis, its applications to the engineering sciences, and stochastic methods in financial models, which was the subject of a minisymposium.
Stochastic portfolio theory is a mathematical methodology for constructing stock portfolios, analyzing the behavior of portfolios, and understanding the structure of equity markets. Stochastic portfolio theory has both theoretical and practical applications: as a theoretical tool it can be used to construct examples of theoretical portfolios with specified characteristics, and to determine the distributional component of portfolio return. On a practical level, stochastic portfolio theory has been the basis for strategies used for over a decade by the institutional equity manager INTECH, where the author has served as chief investment officer. This book is an introduction to stochastic portfolio theory for investment professionals and for students of mathematical finance. Each chapter includes a number of problems of varying levels of difficulty and a brief summary of the principal results of the chapter, without proofs.
Geographical Models with Mathematica provides a fairly comprehensive overview of the types of models necessary for the development of new geographical knowledge, including stochastic models, models for data analysis, for geostatistics, for networks, for dynamic systems, for cellular automata and for multi-agent systems, all discussed in their theoretical context. The author then provides over 65 programs, written in the Mathematica language, that formalize these models. Case studies are provided to help the reader apply these programs to their own studies.
This is the second updated and extended edition of the successful book on Feynman-Kac theory. It offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. In the second volume, these ideas are applied principally to a rigorous treatment of some fundamental models of quantum field theory.
In some cases, certain coherent structures can exist in stochastic dynamic systems almost in every particular realization of random parameters describing these systems. Dynamic localization in one-dimensional dynamic systems, vortexgenesis (vortex production) in hydrodynamic flows, and phenomenon of clustering of various fields in random media (i.e., appearance of small regions with enhanced content of the field against the nearly vanishing background of this field in the remaining portion of space) are examples of such structure formation. The general methodology presented in Volume 1 is used in Volume 2 Coherent Phenomena in Stochastic Dynamic Systems to expound the theory of these phenomena in some specific fields of stochastic science, among which are hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics. The material of this volume includes particle and field clustering in the cases of scalar (density field) and vector (magnetic field) passive tracers in a random velocity field, dynamic localization of plane waves in layered random media, as well as monochromatic wave propagation and caustic structure formation in random media in terms of the scalar parabolic equation.
In this monograph stochastic models of systems analysis are discussed. It covers many aspects and different stages from the construction of mathematical models of real systems, through mathematical analysis of models based on simplification methods, to the interpretation of real stochastic systems. The stochastic models described here share the property that their evolutionary aspects develop under the influence of random factors. It has been assumed that the evolution takes place in a random medium, i.e. unilateral interaction between the system and the medium. As only Markovian models of random medium are considered in this book, the stochastic models described here are determined by two processes, a switching process describing the evolution of the systems and a switching process describing the changes of the random medium. Audience: This book will be of interest to postgraduate students and researchers whose work involves probability theory, stochastic processes, mathematical systems theory, ordinary differential equations, operator theory, or mathematical modelling and industrial mathematics.
The volume includes a collection of peer-reviewed contributions from among those presented at the main conference organized yearly by the Mexican Statistical Association (AME) and every two years by a Latin-American Confederation of Statistical Societies. For the 2018 edition, particular attention was placed on the analysis of highly complex or large data sets, which have come to be known as "big data". Statistical research in Latin America is prolific and research networks span within and outside the region. The goal of this volume is to provide access to selected works from Latin-American collaborators and their research networks to a wider audience. New methodological advances, motivated in part by the challenges of a data-driven world and the Latin American context, will be of interest to academics and practitioners around the world.
It is well-known that modern stochastic calculus has been exhaustively developed under usual conditions. Despite such a well-developed theory, there is evidence to suggest that these very convenient technical conditions cannot necessarily be fulfilled in real-world applications. Optional Processes: Theory and Applications seeks to delve into the existing theory, new developments and applications of optional processes on "unusual" probability spaces. The development of stochastic calculus of optional processes marks the beginning of a new and more general form of stochastic analysis. This book aims to provide an accessible, comprehensive and up-to-date exposition of optional processes and their numerous properties. Furthermore, the book presents not only current theory of optional processes, but it also contains a spectrum of applications to stochastic differential equations, filtering theory and mathematical finance. Features Suitable for graduate students and researchers in mathematical finance, actuarial science, applied mathematics and related areas Compiles almost all essential results on the calculus of optional processes in unusual probability spaces Contains many advanced analytical results for stochastic differential equations and statistics pertaining to the calculus of optional processes Develops new methods in finance based on optional processes such as a new portfolio theory, defaultable claim pricing mechanism, etc.
This book provides a comprehensive up-to-date presentation of some of the classical areas of reliability, based on a more advanced probabilistic framework using the modern theory of stochastic processes. This framework allows analysts to formulate general failure models, establish formulae for computing various performance measures, as well as determine how to identify optimal replacement policies in complex situations. In this second edition of the book, two major topics have been added to the original version: copula models which are used to study the effect of structural dependencies on the system reliability; and maintenance optimization which highlights delay time models under safety constraints. Terje Aven is Professor of Reliability and Risk Analysis at University of Stavanger, Norway. Uwe Jensen is working as a Professor at the Institute of Applied Mathematics and Statistics of the University of Hohenheim in Stuttgart, Germany. Review of first edition: "This is an excellent book on mathematical, statistical and stochastic models in reliability. The authors have done an excellent job of unifying some of the stochastic models in reliability. The book is a good reference book but may not be suitable as a textbook for students in professional fields such as engineering. This book may be used for graduate level seminar courses for students who have had at least the first course in stochastic processes and some knowledge of reliability mathematics. It should be a good reference book for researchers in reliability mathematics." --Mathematical Reviews (2000) "
This book contains articles arising from a conference in honour of mathematician-statistician Mikl s Csoergo on the occasion of his 80th birthday, held in Ottawa in July 2012. It comprises research papers and overview articles, which provide a substantial glimpse of the history and state-of-the-art of the field of asymptotic methods in probability and statistics, written by leading experts. The volume consists of twenty articles on topics on limit theorems for self-normalized processes, planar processes, the central limit theorem and laws of large numbers, change-point problems, short and long range dependent time series, applied probability and stochastic processes, and the theory and methods of statistics. It also includes Csoergo's list of publications during more than 50 years, since 1962.
This book provides a thorough conversation on the underpinnings of Covid-19 spread modelling by using stochastics nonlocal differential and integral operators with singular and non-singular kernels. The book presents the dynamic of Covid-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours which resemble power law, fading memory, crossover and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the worlds. The content coverage includes brief history of Covid-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes.
With the boom of big data and machine learning and the subsequent need for parallel processing technologies, fork-join queues are more relevant now than ever before. In this book, new estimates of the average response time in fork-join queues are proposed, which form the basis for new research opportunities. Analysis of Fork-Join Systems: Network of Queues with Precedence Constraints explores numerical approaches to estimate the average response time of fork-join queueing networks and offers never before published simple expressions for the mean response time as conjectures. Extensive experiments are included to demonstrate the remarkable accuracy of the conjectures and algorithms used in the estimation of the average response time. Graduate students, professors, and researchers in the fields of operations research, management science, industrial engineering, computer science, and electrical engineering will find this book very useful. Students, as well as researchers in both academia and industry, will also find this book of great help when looking for results related to fork-join queues
Features Quickly and concisely builds from basic probability theory to advanced topics Suitable as a primary text for an advanced course in diffusion processes and stochastic differential equations Useful as supplementary reading across a range of topics. |
You may like...
Deep Learning, Volume 48
Arni S.R. Srinivasa Rao, Venu Govindaraju, …
Hardcover
R6,171
Discovery Miles 61 710
Advancements in Bayesian Methods and…
Alastair G Young, Arni S.R. Srinivasa Rao, …
Hardcover
R6,201
Discovery Miles 62 010
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
Hidden Link Prediction in Stochastic…
Babita Pandey, Aditya Khamparia
Hardcover
R4,843
Discovery Miles 48 430
Ruin Probabilities - Smoothness, Bounds…
Yuliya Mishura, Olena Ragulina
Hardcover
R3,086
Discovery Miles 30 860
Data Science: Theory and Applications…
C.R. Rao, Arni S.R. Srinivasa Rao
Hardcover
R6,177
Discovery Miles 61 770
Stochastic Processes - Estimation…
Kaddour Najim, Enso Ikonen, …
Hardcover
R4,310
Discovery Miles 43 100
Simulation of Stochastic Processes with…
Yuriy V Kozachenko, Oleksandr O Pogorilyak, …
Hardcover
Stochastic Komatu-loewner Evolutions
Zhen-Qing Chen, Masatoshi Fukushima, …
Hardcover
R2,371
Discovery Miles 23 710
|