![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
This book is a collection of selected papers presented at the International Conference on Semigroups and Applications, held at the Cochin University of Science and Technology, India, from December 9-12, 2019. This book discusses the recent developments in semigroups theory, category theory and the applications of these in various areas of research, including structure theory of semigroups, lattices, rings and partial algebras. This book presents chapters on ordering orders and quotient rings, block groups and Hall's relations, quotients of the Booleanization of inverse semigroup, Markov chains through semigroup graph expansions, polycyclic inverse monoids and Thompson group, balanced category and bundle category. This book will be of much value to researchers working in areas of semigroup and operator theory.
This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis.
Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.
This book provides, as simply as possible, sound foundations for an in-depth understanding of reliability engineering with regard to qualitative analysis, modelling, and probabilistic calculations of safety and production systems. Drawing on the authors' extensive experience within the field of reliability engineering, it addresses and discusses a variety of topics, including: * Background and overview of safety and dependability studies; * Explanation and critical analysis of definitions related to core concepts; * Risk identification through qualitative approaches (preliminary hazard analysis, HAZOP, FMECA, etc.); * Modelling of industrial systems through static (fault tree, reliability block diagram), sequential (cause-consequence diagrams, event trees, LOPA, bowtie), and dynamic (Markov graphs, Petri nets) approaches; * Probabilistic calculations through state-of-the-art analytical or Monte Carlo simulation techniques; * Analysis, modelling, and calculations of common cause failure and uncertainties; * Linkages and combinations between the various modelling and calculation approaches; * Reliability data collection and standardization. The book features illustrations, explanations, examples, and exercises to help readers gain a detailed understanding of the topic and implement it into their own work. Further, it analyses the production availability of production systems and the functional safety of safety systems (SIL calculations), showcasing specific applications of the general theory discussed. Given its scope, this book is a valuable resource for engineers, software designers, standard developers, professors, and students.
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of the complex analytical models produced by the requirements of operational practice, and the simple solutions needed for implementation. The analytical models and theoretical analysis propounded in this monograph will be of benefit to academic researchers and graduate students looking at logistics and supply chain management from standpoints in operations research or industrial, manufacturing, or control engineering. The practical tools and solutions and the qualitative insights into the ideas underlying functional supply chain systems will be of similar use to readers from more industrially-based backgrounds.
Geographical Models with Mathematica provides a fairly comprehensive overview of the types of models necessary for the development of new geographical knowledge, including stochastic models, models for data analysis, for geostatistics, for networks, for dynamic systems, for cellular automata and for multi-agent systems, all discussed in their theoretical context. The author then provides over 65 programs, written in the Mathematica language, that formalize these models. Case studies are provided to help the reader apply these programs to their own studies.
This book discusses recent developments in dynamic reliability in multi-state systems (MSS), addressing such important issues as reliability and availability analysis of aging MSS, the impact of initial conditions on MSS reliability and availability, changing importance of components over time in MSS with aging components, and the determination of age-replacement policies. It also describes modifications of traditional methods, such as Markov processes with rewards, as well as a modern mathematical method based on the extended universal generating function technique, the Lz-transform, presenting various successful applications and demonstrating their use in real-world problems. This book provides theoretical insights, information on practical applications, and real-world case studies that are of interest to engineers and industrial managers as well as researchers. It also serves as a textbook or supporting text for graduate and postgraduate courses in industrial, electrical, and mechanical engineering.
Statistical inference carries great significance in model building from both the theoretical and the applications points of view. Its applications to engineering and economic systems, financial economics, and the biological and medical sciences have made statistical inference for stochastic processes a well-recognized and important branch of statistics and probability.
The main goal of this book is to systematically address the mathematical methods that are applied in the study of synchronization of infinite-dimensional evolutionary dissipative or partially dissipative systems. It bases its unique monograph presentation on both general and abstract models and covers several important classes of coupled nonlinear deterministic and stochastic PDEs which generate infinite-dimensional dissipative systems. This text, which adapts readily to advanced graduate coursework in dissipative dynamics, requires some background knowledge in evolutionary equations and introductory functional analysis as well as a basic understanding of PDEs and the theory of random processes. Suitable for researchers in synchronization theory, the book is also relevant to physicists and engineers interested in both the mathematical background and the methods for the asymptotic analysis of coupled infinite-dimensional dissipative systems that arise in continuum mechanics.
This book is dedicated to the systematization and development of models, methods, and algorithms for queuing systems with correlated arrivals. After first setting up the basic tools needed for the study of queuing theory, the authors concentrate on complicated systems: multi-server systems with phase type distribution of service time or single-server queues with arbitrary distribution of service time or semi-Markovian service. They pay special attention to practically important retrial queues, tandem queues, and queues with unreliable servers. Mathematical models of networks and queuing systems are widely used for the study and optimization of various technical, physical, economic, industrial, and administrative systems, and this book will be valuable for researchers, graduate students, and practitioners in these domains.
The seminar on Stochastic Analysis and Mathematical Physics started in 1984 at the Catholic University of Chile in Santiago and has been an on going research activity. Since 1995, the group has organized international workshops as a way of promoting a broader dialogue among experts in the areas of classical and quantum stochastic analysis, mathematical physics and physics. This volume, consisting primarily of contributions to the Third Inter national Workshop on Stochastic Analysis and Mathematical Physics (in Spanish ANESTOC), held in Santiago, Chile, in October 1998, focuses on an analysis of quantum dynamics and related problems in probability the ory. Various articles investigate quantum dynamical semigroups and new results on q-deformed oscillator algebras, while others examine the appli cation of classical stochastic processes in quantum modeling. As in previous workshops, the topic of quantum flows and semigroups occupied an important place. In her paper, R. Carbone uses a spectral type analysis to obtain exponential rates of convergence towards the equilibrium of a quantum dynamical semigroup in the GBP2 sense. The method is illus trated with a quantum extension of a classical birth and death process. Quantum extensions of classical Markov processes lead to subtle problems of domains. This is in particular illustrated by F. Fagnola, who presents a pathological example of a semigroup for which the largest * -subalgebra (of the von Neumann algebra of bounded linear operators of GBP2 (lR+, IC)), con tained in the domain of its infinitesimal generator, is not a-weakly dense.
Probability theory has diverse applications in a plethora of fields, including physics, engineering, computer science, chemistry, biology and economics. This book will familiarize students with various applications of probability theory, stochastic modeling and random processes, using examples from all these disciplines and more. The reader learns via case studies and begins to recognize the sort of problems that are best tackled probabilistically. The emphasis is on conceptual understanding, the development of intuition and gaining insight, keeping technicalities to a minimum. Nevertheless, a glimpse into the depth of the topics is provided, preparing students for more specialized texts while assuming only an undergraduate-level background in mathematics. The wide range of areas covered - never before discussed together in a unified fashion - includes Markov processes and random walks, Langevin and Fokker-Planck equations, noise, generalized central limit theorem and extreme values statistics, random matrix theory and percolation theory.
This textbook introduces the theory of stochastic processes, that is, randomness which proceeds in time. Using concrete examples like repeated gambling and jumping frogs, it presents fundamental mathematical results through simple, clear, logical theorems and examples. It covers in detail such essential material as Markov chain recurrence criteria, the Markov chain convergence theorem, and optional stopping theorems for martingales. The final chapter provides a brief introduction to Brownian motion, Markov processes in continuous time and space, Poisson processes, and renewal theory.Interspersed throughout are applications to such topics as gambler's ruin probabilities, random walks on graphs, sequence waiting times, branching processes, stock option pricing, and Markov Chain Monte Carlo (MCMC) algorithms.The focus is always on making the theory as well-motivated and accessible as possible, to allow students and readers to learn this fascinating subject as easily and painlessly as possible.
Solutions Manual to accompany Fundamentals of Matrix Analysis with Applications - an accessible and clear introduction to linear algebra with a focus on matrices and engineering applications
This monograph applies the relative optimization approach to time nonhomogeneous continuous-time and continuous-state dynamic systems. The approach is intuitively clear and does not require deep knowledge of the mathematics of partial differential equations. The topics covered have the following distinguishing features: long-run average with no under-selectivity, non-smooth value functions with no viscosity solutions, diffusion processes with degenerate points, multi-class optimization with state classification, and optimization with no dynamic programming. The book begins with an introduction to relative optimization, including a comparison with the traditional approach of dynamic programming. The text then studies the Markov process, focusing on infinite-horizon optimization problems, and moves on to discuss optimal control of diffusion processes with semi-smooth value functions and degenerate points, and optimization of multi-dimensional diffusion processes. The book concludes with a brief overview of performance derivative-based optimization. Among the more important novel considerations presented are: the extension of the Hamilton-Jacobi-Bellman optimality condition from smooth to semi-smooth value functions by derivation of explicit optimality conditions at semi-smooth points and application of this result to degenerate and reflected processes; proof of semi-smoothness of the value function at degenerate points; attention to the under-selectivity issue for the long-run average and bias optimality; discussion of state classification for time nonhomogeneous continuous processes and multi-class optimization; and development of the multi-dimensional Tanaka formula for semi-smooth functions and application of this formula to stochastic control of multi-dimensional systems with degenerate points. The book will be of interest to researchers and students in the field of stochastic control and performance optimization alike.
This graduate-level textbook covers modelling, programming and analysis of stochastic computer simulation experiments, including the mathematical and statistical foundations of simulation and why it works. The book is rigorous and complete, but concise and accessible, providing all necessary background material. Object-oriented programming of simulations is illustrated in Python, while the majority of the book is programming language independent. In addition to covering the foundations of simulation and simulation programming for applications, the text prepares readers to use simulation in their research. A solutions manual for end-of-chapter exercises is available for instructors.
This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The bookis based on the author's lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President's Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style."
Transmutation operators in differential equations and spectral theory can be used to reveal the relations between different problems, and often make it possible to transform difficult problems into easier ones. Accordingly, they represent an important mathematical tool in the theory of inverse and scattering problems, of ordinary and partial differential equations, integral transforms and equations, special functions, harmonic analysis, potential theory, and generalized analytic functions. This volume explores recent advances in the construction and applications of transmutation operators, while also sharing some interesting historical notes on the subject.
Stochastic processes occur everywhere in the sciences, economics and engineering, and they need to be understood by (applied) mathematicians, engineers and scientists alike. This book gives a gentle introduction to Brownian motion and stochastic processes, in general. Brownian motion plays a special role, since it shaped the whole subject, displays most random phenomena while being still easy to treat, and is used in many real-life models. Im this new edition, much material is added, and there are new chapters on ''Wiener Chaos and Iterated Ito Integrals'' and ''Brownian Local Times''.
This book presents a radically new approach to problems of evaluating and optimizing the performance of continuous-time stochastic systems. This approach is based on the use of a family of Markov processes called Piecewise-Deterministic Processes (PDPs) as a general class of stochastic system models. A PDP is a Markov process that follows deterministic trajectories between random jumps, the latter occurring either spontaneously, in a Poisson-like fashion, or when the process hits the boundary of its state space. This formulation includes an enormous variety of applied problems in engineering, operations research, management science and economics as special cases; examples include queueing systems, stochastic scheduling, inventory control, resource allocation problems, optimal planning of production or exploitation of renewable or non-renewable resources, insurance analysis, fault detection in process systems, and tracking of maneuvering targets, among many others. The first part of the book shows how these applications lead to the PDP as a system model, and the main properties of PDPs are derived. There is particular emphasis on the so-called extended generator of the process, which gives a general method for calculating expectations and distributions of system performance functions. The second half of the book is devoted to control theory for PDPs, with a view to controlling PDP models for optimal performance: characterizations are obtained of optimal strategies both for continuously-acting controllers and for control by intervention (impulse control). Throughout the book, modern methods of stochastic analysis are used, but all the necessary theory is developed from scratch and presented in a self-contained way. The book will be useful to engineers and scientists in the application areas as well as to mathematicians interested in applications of stochastic analysis.
This book is intended as a text covering the central concepts and techniques of Competitive Markov Decision Processes. It is an attempt to present a rig orous treatment that combines two significant research topics: Stochastic Games and Markov Decision Processes, which have been studied exten sively, and at times quite independently, by mathematicians, operations researchers, engineers, and economists. Since Markov decision processes can be viewed as a special noncompeti tive case of stochastic games, we introduce the new terminology Competi tive Markov Decision Processes that emphasizes the importance of the link between these two topics and of the properties of the underlying Markov processes. The book is designed to be used either in a classroom or for self-study by a mathematically mature reader. In the Introduction (Chapter 1) we outline a number of advanced undergraduate and graduate courses for which this book could usefully serve as a text. A characteristic feature of competitive Markov decision processes - and one that inspired our long-standing interest - is that they can serve as an "orchestra" containing the "instruments" of much of modern applied (and at times even pure) mathematics. They constitute a topic where the instruments of linear algebra, applied probability, mathematical program ming, analysis, and even algebraic geometry can be "played" sometimes solo and sometimes in harmony to produce either beautifully simple or equally beautiful, but baroque, melodies, that is, theorems."
Stochastic differential equations are differential equations whose solutions are stochastic processes. They exhibit appealing mathematical properties that are useful in modeling uncertainties and noisy phenomena in many disciplines. This book is motivated by applications of stochastic differential equations in target tracking and medical technology and, in particular, their use in methodologies such as filtering, smoothing, parameter estimation, and machine learning. It builds an intuitive hands-on understanding of what stochastic differential equations are all about, but also covers the essentials of Ito calculus, the central theorems in the field, and such approximation schemes as stochastic Runge-Kutta. Greater emphasis is given to solution methods than to analysis of theoretical properties of the equations. The book's practical approach assumes only prior understanding of ordinary differential equations. The numerous worked examples and end-of-chapter exercises include application-driven derivations and computational assignments. MATLAB/Octave source code is available for download, promoting hands-on work with the methods.
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book's closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.
This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same individuals. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.
This self-contained book lays the foundations for a systematic understanding of potential theoretic and uniformization problems on fractal Sierpinski carpets, and proposes a theory based on the latest developments in the field of analysis on metric spaces. The first part focuses on the development of an innovative theory of harmonic functions that is suitable for Sierpinski carpets but differs from the classical approach of potential theory in metric spaces. The second part describes how this theory is utilized to prove a uniformization result for Sierpinski carpets. This book is intended for researchers in the fields of potential theory, quasiconformal geometry, geometric group theory, complex dynamics, geometric function theory and PDEs. |
![]() ![]() You may like...
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Modern Dynamic Reliability Analysis for…
Anatoly Lisnianski, Ilia Frenkel, …
Hardcover
R5,140
Discovery Miles 51 400
Geometry and Statistics, Volume 46
Frank Nielsen, Arni S.R. Srinivasa Rao, …
Hardcover
R6,434
Discovery Miles 64 340
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,388
Discovery Miles 73 880
Deep Learning, Volume 48
Arni S.R. Srinivasa Rao, Venu Govindaraju, …
Hardcover
R6,411
Discovery Miles 64 110
Advancements in Bayesian Methods and…
Alastair G Young, Arni S.R. Srinivasa Rao, …
Hardcover
R6,442
Discovery Miles 64 420
|