![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Traditions of the 150-year-old St. Petersburg School of Probability and Statis tics had been developed by many prominent scientists including P. L. Cheby chev, A. M. Lyapunov, A. A. Markov, S. N. Bernstein, and Yu. V. Linnik. In 1948, the Chair of Probability and Statistics was established at the Department of Mathematics and Mechanics of the St. Petersburg State University with Yu. V. Linik being its founder and also the first Chair. Nowadays, alumni of this Chair are spread around Russia, Lithuania, France, Germany, Sweden, China, the United States, and Canada. The fiftieth anniversary of this Chair was celebrated by an International Conference, which was held in St. Petersburg from June 24-28, 1998. More than 125 probabilists and statisticians from 18 countries (Azerbaijan, Canada, Finland, France, Germany, Hungary, Israel, Italy, Lithuania, The Netherlands, Norway, Poland, Russia, Taiwan, Turkey, Ukraine, Uzbekistan, and the United States) participated in this International Conference in order to discuss the current state and perspectives of Probability and Mathematical Statistics. The conference was organized jointly by St. Petersburg State University, St. Petersburg branch of Mathematical Institute, and the Euler Institute, and was partially sponsored by the Russian Foundation of Basic Researches. The main theme of the Conference was chosen in the tradition of the St."
This is the second updated and extended edition of the successful book on Feynman-Kac theory. It offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. In the second volume, these ideas are applied principally to a rigorous treatment of some fundamental models of quantum field theory.
In pioneering work in the 1950s, S. Karlin and J. McGregor showed that probabilistic aspects of certain Markov processes can be studied by analyzing orthogonal eigenfunctions of associated operators. In the decades since, many authors have extended and deepened this surprising connection between orthogonal polynomials and stochastic processes. This book gives a comprehensive analysis of the spectral representation of the most important one-dimensional Markov processes, namely discrete-time birth-death chains, birth-death processes and diffusion processes. It brings together the main results from the extensive literature on the topic with detailed examples and applications. Also featuring an introduction to the basic theory of orthogonal polynomials and a selection of exercises at the end of each chapter, it is suitable for graduate students with a solid background in stochastic processes as well as researchers in orthogonal polynomials and special functions who want to learn about applications of their work to probability.
Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing system. Most of the text should be accessible to scientists with basic knowledge in calculus and probability theory. The authors illustrate the relevant Markov chain theory using realistic models from systems biology, including signaling and metabolic pathways, phosphorylation processes, genetic switches, and transcription. A central part of the book presents an original and up-to-date treatment of cooperativity. The book defines classical indexes, such as the Hill coefficient, using notions from statistical mechanics. It explains why binding curves often have S-shapes and why cooperative behaviors can lead to ultrasensitive genetic switches. These notions are then used to model transcription rates. Examples cover the phage lambda genetic switch and eukaryotic gene expression. The book then presents a short course on dynamical systems and describes stochastic aspects of linear noise approximation. This mathematical framework enables the simplification of complex stochastic dynamics using Gaussian processes and nonlinear ODEs. Simple examples illustrate the technique in noise propagation in gene networks and the effects of network structures on multistability and gene expression noise levels. The last chapter provides up-to-date results on stochastic and deterministic mass action kinetics with applications to enzymatic biochemical reactions and metabolic pathways.
This book contains an introductory and comprehensive account of the theory of (symmetric) Dirichlet forms. Moreover this analytic theory is unified with the probabilistic potential theory based on symmetric Markov processes and developed further in conjunction with the stochastic analysis based on additive functional. Since the publication of the first edition in 1994, this book has attracted constant interests from readers and is by now regarded as a standard reference for the theory of Dirichlet forms. For the present second edition, the authors not only revised the existing text, but also added sections on capacities and Sobolev type inequalities, irreducible recurrence and ergodicity, recurrence and Poincare type inequalities, the Donsker-Varadhan type large deviation principle, as well as several new exercises with solutions. The book addresses to researchers and graduate students who wish to comprehend the area of Dirichlet forms and symmetric Markov processes.
Collecting together selected pioneering works of the celebrated mathematician Anatolii V. Skorokhod, this volume serves as a guide to the theory of stochastic processes from its beginning to its current state. It offers both an excellent bibliographic resource and a unique opportunity for readers to gain a better understanding of Skorokhod's original and beautiful ideas, which had a deep impact on the development of the subject. The modern theory of stochastic processes is a fast-growing branch of probability theory which is now an independent science in its own right, with its own methods and philosophy. It has many applications in various fields, including financial mathematics, quantum physics and engineering. A clear understanding of this theory is impossible without knowledge of the ideas which form its base, many of which are due to Skorokhod. The book is intended for a broad audience of researchers and students with an interest in probability theory, stochastic processes and their applications.
Financial engineering has been proven to be a useful tool for risk management, but using the theory in practice requires a thorough understanding of the risks and ethical standards involved. Stochastic Processes with Applications to Finance, Second Edition presents the mathematical theory of financial engineering using only basic mathematical tools that are easy to understand even for those with little mathematical expertise. This second edition covers several important developments in the financial industry. New to the Second Edition A chapter on the change of measures and pricing of insurance products Many examples of the change of measure technique, including its use in asset pricing theory A section on the use of copulas, especially in the pricing of CDOs Two chapters that offer more coverage of interest rate derivatives and credit derivatives Exploring the merge of actuarial science and financial engineering, this edition examines how the pricing of insurance products, such as equity-linked annuities, requires knowledge of asset pricing theory since the equity index can be traded in the market. The book looks at the development of many probability transforms for pricing insurance risks, including the Esscher transform. It also describes how the copula model is used to model the joint distribution of underlying assets. By presenting significant results in discrete processes and showing how to transfer the results to their continuous counterparts, this text imparts an accessible, practical understanding of the subject. It helps readers not only grasp the theory of financial engineering, but also implement the theory in business.
This volume is devoted to stochastic and chaotic oscillations in dissipative systems. It first deals with mathematical models of deterministic, discrete and distributed dynamical systems. It then considers the two basic trends of order and chaos, and describes stochasticity transformers, amplifiers and generators, turbulence and phase portraits of steady-state motions and their bifurcations. The books also treats the topics of stochastic and chaotic attractors, as well as the routes to chaos and the quantitative characteristics of stochastic and chaotic motions. Finally, in a chapter which comprises more than one-third of the book, examples are presented of systems having chaotic and stochastic motions drawn from mechanical, physical, chemical and biological systems.
Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more.
Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB (R) and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data.
The third edition of Van Kampen's standard work has been revised
and updated. The main difference with the second edition is that
the contrived application of the quantum master equation in section
6 of chapter XVII has been replaced with a satisfactory treatment
of quantum fluctuations. Apart from that throughout the text
corrections have been made and a number of references to later
developments have been included. From the recent textbooks the
following are the most relevant.
The aim of this book is to promote interaction between engineering, finance and insurance, as these three domains have many models and methods of solution in common for solving real-life problems. The authors point out the strict inter-relations that exist among the diffusion models used in engineering, finance and insurance. In each of the three fields, the basic diffusion models are presented and their strong similarities are discussed. Analytical, numerical and Monte Carlo simulation methods are explained with a view to applying them to obtain the solutions to the different problems presented in the book. Advanced topics such as nonlinear problems, Levy processes and semi-Markov models in interactions with the diffusion models are discussed, as well as possible future interactions among engineering, finance and insurance. Contents 1. Diffusion Phenomena and Models.2. Probabilistic Models of Diffusion Processes.3. Solving Partial Differential Equations of Second Order.4. Problems in Finance.5. Basic PDE in Finance.6. Exotic and American Options Pricing Theory.7. Hitting Times for Diffusion Processes and Stochastic Models in Insurance.8. Numerical Methods.9. Advanced Topics in Engineering: Nonlinear Models.10. Levy Processes.11. Advanced Topics in Insurance: Copula Models and VaR Techniques.12. Advanced Topics in Finance: Semi-Markov Models.13. Monte Carlo Semi-Markov Simulation Methods. About the Authors Jacques Janssen is now Honorary Professor at the Solvay Business School (ULB) in Brussels, Belgium, having previously taught at EURIA (Euro-Institut d'Actuariat, University of West Brittany, Brest, France) and Telecom-Bretagne (Brest, France) as well as being a director of Jacan Insurance and Finance Services, a consultancy and training company.Oronzio Manca is Professor of thermal sciences at Seconda Universita degli Studi di Napoli in Italy. He is currently Associate Editor of ASME Journal of Heat Transfer and Journal of Porous Media and a member of the editorial advisory boards for The Open Thermodynamics Journal, Advances in Mechanical Engineering, The Open Fuels & Energy Science Journal.Raimondo Manca is Professor of mathematical methods applied to economics, finance and actuarial science at University of Rome "La Sapienza" in Italy. He is associate editor for the journal Methodology and Computing in Applied Probability. His main research interests are multidimensional linear algebra, computational probability, application of stochastic processes to economics, finance and insurance and simulation models.
Normalizing flows, diffusion normalizing flows and variational autoencoders are powerful generative models. This Element provides a unified framework to handle these approaches via Markov chains. The authors consider stochastic normalizing flows as a pair of Markov chains fulfilling some properties, and show how many state-of-the-art models for data generation fit into this framework. Indeed numerical simulations show that including stochastic layers improves the expressivity of the network and allows for generating multimodal distributions from unimodal ones. The Markov chains point of view enables the coupling of both deterministic layers as invertible neural networks and stochastic layers as Metropolis-Hasting layers, Langevin layers, variational autoencoders and diffusion normalizing flows in a mathematically sound way. The authors' framework establishes a useful mathematical tool to combine the various approaches.
Products of Random Variables explores the theory of products of random variables through from distributions and limit theorems, to characterizations, to applications in physics, order statistics, and number theory. It uses entirely probabilistic arguments in actualizing the potential of the asymptotic theory of products of independent random variables and obtaining results with dependent variables using a new Bonferroni-type argument. Systematically and comprehensively tracks the progression of research completed in the area over the last twenty years. Well-indexed and well-referenced, Products of Random Variables -Clarifies foundational concepts such as symmetric and limiting distributions of products -Examines various limit theorems, from logarithmically Poisson distributions to triangular arrays -Explores characterization theorems, detailing normal, Cauchy, and bivariate distributions -Describes models of interactive particles -Elucidates dual systems of interactive particles, dual systems of increasing size, and random walks -Covers the Kubilius-Turan inequality and distributions for multiplicative functions -Probes sequences of prime divisors and prime numbers -Discusses Markov chains, Hilbert spaces, and quotients of random variables -Presents income growth models and numerous other applied models tapping products of random variables Authored by eminent scholars in the field, this volume is an important research reference for applied mathematicians, statisticians, physicists, and graduate students in these disciplines.
This book studies the large deviations for empirical measures and vector-valued additive functionals of Markov chains with general state space. Under suitable recurrence conditions, the ergodic theorem for additive functionals of a Markov chain asserts the almost sure convergence of the averages of a real or vector-valued function of the chain to the mean of the function with respect to the invariant distribution. In the case of empirical measures, the ergodic theorem states the almost sure convergence in a suitable sense to the invariant distribution. The large deviation theorems provide precise asymptotic estimates at logarithmic level of the probabilities of deviating from the preponderant behavior asserted by the ergodic theorems.
This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis.
Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of the complex analytical models produced by the requirements of operational practice, and the simple solutions needed for implementation. The analytical models and theoretical analysis propounded in this monograph will be of benefit to academic researchers and graduate students looking at logistics and supply chain management from standpoints in operations research or industrial, manufacturing, or control engineering. The practical tools and solutions and the qualitative insights into the ideas underlying functional supply chain systems will be of similar use to readers from more industrially-based backgrounds.
Statistical inference carries great significance in model building from both the theoretical and the applications points of view. Its applications to engineering and economic systems, financial economics, and the biological and medical sciences have made statistical inference for stochastic processes a well-recognized and important branch of statistics and probability.
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction.
The seminar on Stochastic Analysis and Mathematical Physics started in 1984 at the Catholic University of Chile in Santiago and has been an on going research activity. Since 1995, the group has organized international workshops as a way of promoting a broader dialogue among experts in the areas of classical and quantum stochastic analysis, mathematical physics and physics. This volume, consisting primarily of contributions to the Third Inter national Workshop on Stochastic Analysis and Mathematical Physics (in Spanish ANESTOC), held in Santiago, Chile, in October 1998, focuses on an analysis of quantum dynamics and related problems in probability the ory. Various articles investigate quantum dynamical semigroups and new results on q-deformed oscillator algebras, while others examine the appli cation of classical stochastic processes in quantum modeling. As in previous workshops, the topic of quantum flows and semigroups occupied an important place. In her paper, R. Carbone uses a spectral type analysis to obtain exponential rates of convergence towards the equilibrium of a quantum dynamical semigroup in the GBP2 sense. The method is illus trated with a quantum extension of a classical birth and death process. Quantum extensions of classical Markov processes lead to subtle problems of domains. This is in particular illustrated by F. Fagnola, who presents a pathological example of a semigroup for which the largest * -subalgebra (of the von Neumann algebra of bounded linear operators of GBP2 (lR+, IC)), con tained in the domain of its infinitesimal generator, is not a-weakly dense.
Presenting statistical and stochastic methods for the analysis and design of technological systems in engineering and applied areas, this work documents developments in statistical modelling, identification, estimation and signal processing. The book covers such topics as subspace methods, stochastic realization, state space modelling, and identification and parameter estimation.
This book deals with certain important problems in Classical and Quantum Information Theory Quantum Information Theory, A Selection of Matrix Inequalities Stochastic Filtering Theory Applied to Electromagnetic Fields and Strings Wigner-distributions in Quantum Mechanics Quantization of Classical Field Theories Statistical Signal Processing Quantum Field Theory, Quantum Statistics, Gravity, Stochastic Fields and Information Problems in Information Theory It will be very helpful for students of Undergraduate and Postgraduate Courses in Electronics, Communication and Signal Processing. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).
Applications of queueing network models have multiplied in the last generation, including scheduling of large manufacturing systems, control of patient flow in health systems, load balancing in cloud computing, and matching in ride sharing. These problems are too large and complex for exact solution, but their scale allows approximation. This book is the first comprehensive treatment of fluid scaling, diffusion scaling, and many-server scaling in a single text presented at a level suitable for graduate students. Fluid scaling is used to verify stability, in particular treating max weight policies, and to study optimal control of transient queueing networks. Diffusion scaling is used to control systems in balanced heavy traffic, by solving for optimal scheduling, admission control, and routing in Brownian networks. Many-server scaling is studied in the quality and efficiency driven Halfin-Whitt regime and applied to load balancing in the supermarket model and to bipartite matching in ride-sharing applications.
Applications of queueing network models have multiplied in the last generation, including scheduling of large manufacturing systems, control of patient flow in health systems, load balancing in cloud computing, and matching in ride sharing. These problems are too large and complex for exact solution, but their scale allows approximation. This book is the first comprehensive treatment of fluid scaling, diffusion scaling, and many-server scaling in a single text presented at a level suitable for graduate students. Fluid scaling is used to verify stability, in particular treating max weight policies, and to study optimal control of transient queueing networks. Diffusion scaling is used to control systems in balanced heavy traffic, by solving for optimal scheduling, admission control, and routing in Brownian networks. Many-server scaling is studied in the quality and efficiency driven Halfin-Whitt regime and applied to load balancing in the supermarket model and to bipartite matching in ride-sharing applications. |
You may like...
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Modeling Uncertainty - An Examination of…
Moshe Dror, Pierre L'Ecuyer, …
Hardcover
R5,985
Discovery Miles 59 850
Ruin Probabilities - Smoothness, Bounds…
Yuliya Mishura, Olena Ragulina
Hardcover
R3,086
Discovery Miles 30 860
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
Stochastic Processes - Estimation…
Kaddour Najim, Enso Ikonen, …
Hardcover
R4,310
Discovery Miles 43 100
Deep Learning, Volume 48
Arni S.R. Srinivasa Rao, Venu Govindaraju, …
Hardcover
R6,171
Discovery Miles 61 710
Advancements in Bayesian Methods and…
Alastair G Young, Arni S.R. Srinivasa Rao, …
Hardcover
R6,201
Discovery Miles 62 010
|