![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
The book treats two topics in the theory of stochastic partial differential equations: space-regularity of solutions and existence of stochastic flows. The equations considered in the book are linear parabolic with multiplicative noise, like those arising in non-linear filtering or diffusion models in randomly moving media. Regularity theory in Sobolev spaces is extensively investigated, for homogeneous and non-homogeneous boundary value problems, with a detailed analysis of the new geometrical conditions on coefficients arising as a consequence of the stochaticity. The book provides an account of regularity results that may represent a useful reference for the researcher in stochastic partial differential equations. Regularity theory is then applied to prove the existence of stochastic flows. In spite of the variety of results on stochastic flows obtained by this method, several open problems are pointed out, with the hope of stimulating further research on this subject.
This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "Dyson processes", and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods. Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.
Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data.
Presents new computer methods in approximation, simulation, and visualization for a host of alpha-stable stochastic processes.
Biomathematical Problems in Optimization of Cancer Radiotherapy provides insight into the role of cell population heterogeneity in the optimal control of fractionated irradiation of tumors. The book emphasizes the mathematical modeling aspect of the problem and presents the state of the art in the stochastic description of irradiated cell survival. Some of the results are of general theoretical interest and can be applied to other areas of optimal control methodology. Detailed explanations of all mathematical statements are provided throughout the text. The book is excellent for biomathematicians, radiotherapists, oncologists, health physicists, and other researchers and students interested in the topic.
Semimartingale Theory and Stochastic Calculus presents a systematic and detailed account of the general theory of stochastic processes, the semimartingale theory, and related stochastic calculus. The book emphasizes stochastic integration for semimartingales, characteristics of semimartingales, predictable representation properties and weak convergence of semimartingales. It also includes a concise treatment of absolute continuity and singularity, contiguity, and entire separation of measures by semimartingale approach. Two basic types of processes frequently encountered in applied probability and statistics are highlighted: processes with independent increments and marked point processes encountered frequently in applied probability and statistics.
This book contains all of Wolfgang Doeblin's publications. In addition, it includes a reproduction of the pli cachete on l'equation de Kolmogoroff and previously unpublished material that Doeblin wrote in 1940. The articles are accompanied by commentaries written by specialists in Doeblin's various areas of interest. The modern theory of probability developed between the two World Wars thanks to the very remarkable work of Kolmogorov, Khinchin, S.N. Bernstein, Romanovsky, von Mises, Hostinsky, Onicescu, Frechet, Levy and others, among whom one name shines particularly brightly, that of Wolfgang Doeblin (1915-1940). The work of this young mathematician, whose life was tragically cut short by the war, remains even now, and indeed will remain into the future, an exemplar of originality and of mathematical power. This book was conceived and in essence brought to fruition by Marc Yor before his death in 2014. It is dedicated to him.
Nonlinear modelling has become increasingly important and widely used in economics. This valuable book brings together recent advances in the area including contributions covering cross-sectional studies of income distribution and discrete choice models, time series models of exchange rate dynamics and jump processes, and artificial neural network and genetic algorithm models of financial markets. Attention is given to the development of theoretical models as well as estimation and testing methods with a wide range of applications in micro and macroeconomics, labour and finance. The book provides valuable introductory material that is accessible to students and scholars interested in this exciting research area, as well as presenting the results of new and original research. Nonlinear Economic Models provides a sequel to Chaos and Nonlinear Models in Economics by the same editors.
Traditions of the 150-year-old St. Petersburg School of Probability and Statis tics had been developed by many prominent scientists including P. L. Cheby chev, A. M. Lyapunov, A. A. Markov, S. N. Bernstein, and Yu. V. Linnik. In 1948, the Chair of Probability and Statistics was established at the Department of Mathematics and Mechanics of the St. Petersburg State University with Yu. V. Linik being its founder and also the first Chair. Nowadays, alumni of this Chair are spread around Russia, Lithuania, France, Germany, Sweden, China, the United States, and Canada. The fiftieth anniversary of this Chair was celebrated by an International Conference, which was held in St. Petersburg from June 24-28, 1998. More than 125 probabilists and statisticians from 18 countries (Azerbaijan, Canada, Finland, France, Germany, Hungary, Israel, Italy, Lithuania, The Netherlands, Norway, Poland, Russia, Taiwan, Turkey, Ukraine, Uzbekistan, and the United States) participated in this International Conference in order to discuss the current state and perspectives of Probability and Mathematical Statistics. The conference was organized jointly by St. Petersburg State University, St. Petersburg branch of Mathematical Institute, and the Euler Institute, and was partially sponsored by the Russian Foundation of Basic Researches. The main theme of the Conference was chosen in the tradition of the St."
Stochastic phenomena play a central role in various scientific disciplines and underpin applications in popular industrial sectors. The purpose of the book is to introduce the reader to advanced concepts in the analysis of stochastic models starting from a detailed, intuitive and yet rigorous presentation of basic concepts. A special emphasis will be placed on problem solving and numerical implementations, with detailed solutions to all of the results and source code in the C programming language provided. The book will also cover recent specialised techniques for popular problems, providing a valuable reference for advanced readers with an active interest in the field.
Sojourns and Extremes of Stochastic Processes is a research monograph in the area of probability theory. During the past thirty years Berman has made many contributions to the theory of the extreme values and sojourn times of the sample functions of broad classes of stochastic processes. These processes arise in theoretical and applied models, and are presented here in a unified exposition.
Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more.
This book aims to position itself between the level of elementary probability texts and advanced works on stochastic processes. The pre-requisites to consult this book are a course on elementary probability theory and statistics, and a course on advanced calculus. In this book numberous examples have been given, based on theories discussed and a large number of problems along with their answers have also been provided. This revised edition further updates the materials and references and some new chapters have been introduced. The text has been designed particularly for advanced undergraduate, postgraduate and research level courses in applied maths, statistics, operations research, computer science, different branches of engineering, telecommunications, business and management, economics and life sciences.
A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.
This book discusses quantum theory as the theory of random (Brownian) motion of small particles (electrons etc.) under external forces. Implying that the Schroedinger equation is a complex-valued evolution equation and the Schroedinger function is a complex-valued evolution function, important applications are given. Readers will learn about new mathematical methods (theory of stochastic processes) in solving problems of quantum phenomena. Readers will also learn how to handle stochastic processes in analyzing physical phenomena.
By reducing mathematical detail and focusing on real-world applications, this book provides engineers with an easy-to-understand overview of stochastic modeling. An entire chapter is included on how to set up the problem, and then another complete chapter presents examples of applications before doing any math. A previously unpublished computational method for solving equations related to Markov processes is added. The book shows how to add costs or revenues to the basic probability structures without much additional effort. In addition, numerous examples are included that show how the theory can be used. Engineers will also find explanations on how to formulate word problems into the models that the math worked on.
Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB (R) and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data.
This book presents state-of-the-art solution methods and applications of stochastic optimal control. It is a collection of extended papers discussed at the traditional Liverpool workshop on controlled stochastic processes with participants from both the east and the west. New problems are formulated, and progresses of ongoing research are reported. Topics covered in this book include theoretical results and numerical methods for Markov and semi-Markov decision processes, optimal stopping of Markov processes, stochastic games, problems with partial information, optimal filtering, robust control, Q-learning, and self-organizing algorithms. Real-life case studies and applications, e.g., queueing systems, forest management, control of water resources, marketing science, and healthcare, are presented. Scientific researchers and postgraduate students interested in stochastic optimal control,- as well as practitioners will find this book appealing and a valuable reference.
The book contains two contributions about the work of Emmanuele DiBenedetto and a selection of original papers. The authors are some of the main experts in Harnack's inequalities and nonlinear operators. These papers are part of the contributions presented during the conference to celebrate the 70th birthday of Prof. Emmanuele DiBenedetto, which was held at "Il Palazzone" in Cortona from June 18th to 24th, 2017. The papers are focused on current research topics regarding the qualitative properties of solutions, connections with calculus of variations, Harnack inequality and regularity theory. Some papers are also related to various applications. Many of the authors have shared with Prof. DiBenedetto an intense scientific and personal collaboration, while many others have taken inspiration from and further developed his field of research. The topics of the conference are certainly of great interest for the international mathematical community.
This book deals with certain important problems in Classical and Quantum Information Theory Quantum Information Theory, A Selection of Matrix Inequalities Stochastic Filtering Theory Applied to Electromagnetic Fields and Strings Wigner-distributions in Quantum Mechanics Quantization of Classical Field Theories Statistical Signal Processing Quantum Field Theory, Quantum Statistics, Gravity, Stochastic Fields and Information Problems in Information Theory It will be very helpful for students of Undergraduate and Postgraduate Courses in Electronics, Communication and Signal Processing. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).
This book is aimed at researchers, graduate students and engineers who would like to be initiated to Piecewise Deterministic Markov Processes (PDMPs). A PDMP models a deterministic mechanism modified by jumps that occur at random times. The fields of applications are numerous : insurance and risk, biology, communication networks, dependability, supply management, etc. Indeed, the PDMPs studied so far are in fact deterministic functions of CSMPs (Completed Semi-Markov Processes), i.e. semi-Markov processes completed to become Markov processes. This remark leads to considerably broaden the definition of PDMPs and allows their properties to be deduced from those of CSMPs, which are easier to grasp. Stability is studied within a very general framework. In the other chapters, the results become more accurate as the assumptions become more precise. Generalized Chapman-Kolmogorov equations lead to numerical schemes. The last chapter is an opening on processes for which the deterministic flow of the PDMP is replaced with a Markov process. Marked point processes play a key role throughout this book.
This textbook, now in its fourth edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, it features concrete examples of modeling real-world problems from biology, medicine, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Unlike other books on stochastic methods that specialize in a specific field of applications, this volume examines the ways in which similar stochastic methods can be applied across different fields. Beginning with the fundamentals of probability, the authors go on to introduce the theory of stochastic processes, the Ito Integral, and stochastic differential equations. The following chapters then explore stability, stationarity, and ergodicity. The second half of the book is dedicated to applications to a variety of fields, including finance, biology, and medicine. Some highlights of this fourth edition include a more rigorous introduction to Gaussian white noise, additional material on the stability of stochastic semigroups used in models of population dynamics and epidemic systems, and the expansion of methods of analysis of one-dimensional stochastic differential equations. An Introduction to Continuous-Time Stochastic Processes, Fourth Edition is intended for graduate students taking an introductory course on stochastic processes, applied probability, stochastic calculus, mathematical finance, or mathematical biology. Prerequisites include knowledge of calculus and some analysis; exposure to probability would be helpful but not required since the necessary fundamentals of measure and integration are provided. Researchers and practitioners in mathematical finance, biomathematics, biotechnology, and engineering will also find this volume to be of interest, particularly the applications explored in the second half of the book.
This monograph presents the geoscientific context arising in decorrelative gravitational exploration to determine the mass density distribution inside the Earth. First, an insight into the current state of research is given by reducing gravimetry to mathematically accessible, and thus calculable, decorrelated models. In this way, the various unresolved questions and problems of gravimetry are made available to a broad scientific audience and the exploration industry. New theoretical developments will be given, and innovative ways of modeling geologic layers and faults by mollifier regularization techniques are shown. This book is dedicated to surface as well as volume geology with potential data primarily of terrestrial origin. For deep geology, the geomathematical decorrelation methods are to be designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Bridging several different geo-disciplines, this book leads in a cycle from the potential measurements made by geoengineers, to the cleansing of data by geophysicists and geoengineers, to the subsequent theory and model formation, computer-based implementation, and numerical calculation and simulations made by geomathematicians, to interpretation by geologists, and, if necessary, back. It therefore spans the spectrum from geoengineering, especially geodesy, via geophysics to geomathematics and geology, and back. Using the German Saarland area for methodological tests, important new fields of application are opened, particularly for regions with mining-related cavities or dense development in today's geo-exploration.
The aim of this book is to promote interaction between engineering, finance and insurance, as these three domains have many models and methods of solution in common for solving real-life problems. The authors point out the strict inter-relations that exist among the diffusion models used in engineering, finance and insurance. In each of the three fields, the basic diffusion models are presented and their strong similarities are discussed. Analytical, numerical and Monte Carlo simulation methods are explained with a view to applying them to obtain the solutions to the different problems presented in the book. Advanced topics such as nonlinear problems, Levy processes and semi-Markov models in interactions with the diffusion models are discussed, as well as possible future interactions among engineering, finance and insurance. Contents 1. Diffusion Phenomena and Models.2. Probabilistic Models of Diffusion Processes.3. Solving Partial Differential Equations of Second Order.4. Problems in Finance.5. Basic PDE in Finance.6. Exotic and American Options Pricing Theory.7. Hitting Times for Diffusion Processes and Stochastic Models in Insurance.8. Numerical Methods.9. Advanced Topics in Engineering: Nonlinear Models.10. Levy Processes.11. Advanced Topics in Insurance: Copula Models and VaR Techniques.12. Advanced Topics in Finance: Semi-Markov Models.13. Monte Carlo Semi-Markov Simulation Methods. About the Authors Jacques Janssen is now Honorary Professor at the Solvay Business School (ULB) in Brussels, Belgium, having previously taught at EURIA (Euro-Institut d'Actuariat, University of West Brittany, Brest, France) and Telecom-Bretagne (Brest, France) as well as being a director of Jacan Insurance and Finance Services, a consultancy and training company.Oronzio Manca is Professor of thermal sciences at Seconda Universita degli Studi di Napoli in Italy. He is currently Associate Editor of ASME Journal of Heat Transfer and Journal of Porous Media and a member of the editorial advisory boards for The Open Thermodynamics Journal, Advances in Mechanical Engineering, The Open Fuels & Energy Science Journal.Raimondo Manca is Professor of mathematical methods applied to economics, finance and actuarial science at University of Rome "La Sapienza" in Italy. He is associate editor for the journal Methodology and Computing in Applied Probability. His main research interests are multidimensional linear algebra, computational probability, application of stochastic processes to economics, finance and insurance and simulation models.
This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers. |
![]() ![]() You may like...
Classical Newtonian Gravity - A…
Roberto A. Capuzzo Dolcetta
Hardcover
R2,281
Discovery Miles 22 810
Data Science: Theory and Applications…
C.R. Rao, Arni S.R. Srinivasa Rao
Hardcover
R6,417
Discovery Miles 64 170
Advancements in Bayesian Methods and…
Alastair G Young, Arni S.R. Srinivasa Rao, …
Hardcover
R6,442
Discovery Miles 64 420
Hidden Link Prediction in Stochastic…
Babita Pandey, Aditya Khamparia
Hardcover
R5,349
Discovery Miles 53 490
Geometry and Statistics, Volume 46
Frank Nielsen, Arni S.R. Srinivasa Rao, …
Hardcover
R6,434
Discovery Miles 64 340
Stochastic Numerical Methods - An…
Raul Toral, Pere Colet
Paperback
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,388
Discovery Miles 73 880
|